Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Density, F10.7, and Kp Data
2.2. Methods
2.2.1. Data Processing from Swarm Mission
2.2.2. Pearson’s Correlation Coefficient
2.2.3. Wavelet Transform
3. Results
3.1. Types of Variation
3.2. Relationship between Annual Density Variation and Solar/Geomagnetic Index
4. Discussions and Summary
Author Contributions
Funding
Conflicts of Interest
References
- Forbes, J.M.; Lu, G.; Bruinsma, S.; Nerem, S.; Zhang, X. Thermosphere density variations due to the 15– 24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res. 2005, 110, A12S27. [Google Scholar] [CrossRef]
- Amm, O.; Vanhamäki, H.; Kauristie, K.; Stolle, C.; Christiansen, F.; Haagmans, R.; Masson, A.; Taylor, M.G.G.T.; Floberghagen, R.; Escoubet, C.P. A method to derive maps of ionospheric conductances, currents, and convection from the SWARM multisatellite mission. J. Geophys. Res. 2015, 120, 3263–3282. [Google Scholar] [CrossRef] [Green Version]
- Marcos, F.; Garrett, H.; Champion, K.; Forbes, J. Density variations in the lower thermosphere from analysis of the AE–C accelerometer measurements. Planet. Space Sci. 1977, 25, 499–507. [Google Scholar] [CrossRef]
- Marcos, F.; Forbes, J. Thermospheric winds from the satellite electrostatic triaxial accelerometer system. J. Geophys. Res. 1985, 90, 6543–6552. [Google Scholar] [CrossRef]
- Bowman, B.R.; Tobiska, W.K.; Marcos, F.A.; Huang, C.Y.; Lin, C.S.; Burke, W.J. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008; p. 6438. [Google Scholar]
- Bowman, B.R.; Tobiska, W.K.; Marcos, F.A.; Valladares, C. The JB2006 empirical thermospheric density model. J. Atmos. Solar–Terres. Phys. 2008, 70, 774–793. [Google Scholar] [CrossRef]
- Doornbos, E.; Förster, M.; Fritsche, B.; Helleputte, T.; IJssel, I.; Koppenwallner, H.; Rees, D.; Visser, P. Air density models derived from multi–satellite drag observations. In DEOS/TU Delft Scientific Report; Delft University of Technology: Delft, The Netherlands, 2009; p. 27. [Google Scholar]
- Friis–Christensen, E.; Luhr, H.; Knudsen, D.; Haagmans, R. SWARM—An Earth Observation Mission investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Olsen, N.; Alken, P.; Beggan, C.; Chulliat, A.; Doornbos, E.; Encarnacao, J.; Floberghagen, R.; Friis–Christensen, E.; Hamilton, B.; Hulot, G.; et al. SCARF—The SWARM Satellite Constellation Application and Research Facility. In Proceedings of the European Space Agency Living Planet Symposium 2013, Edinburgh, UK, 9–13 September 2013; p. 12. [Google Scholar]
- Sang, J.; Smith, C.; Zhang, K. A Method of estimating atmospheric mass density from precision orbit solution. In Proceedings of the AIAA/AAS Astrodynamics, Minneapolis, MO, USA, 13–16 August 2012; pp. 1–7. [Google Scholar]
- Solomon, S.C.; Qian, L.; Didkovsky, L.V.; Viereck, R.A.; Woods, T.N. Causes of low thermospheric density during the 2007–2009 solar minimum. J. Geophys. Res. 2011, 116, A00H07. [Google Scholar] [CrossRef]
- Qian, L.; Solomon, S.C. Thermospheric Density: An Overview of Temporal and Spatial Variations. Space Sci. Rev. 2012, 168, 147–173. [Google Scholar] [CrossRef]
- Sassi, F.; Boville, B.A.; Kinnison, D.; Garcia, R.R. The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys. Res. Lett. 2005, 32, L07811. [Google Scholar] [CrossRef]
- Emmert, J.T.; Picone, J.M.; Lean, J.L.; Knowles, S.H. Global change in the thermosphere: Compelling evidence of a secular decrease in density. J. Geophys. Res. 2004, 109, A02301. [Google Scholar] [CrossRef]
- Emmert, J.T.; Drob, D.P.; Shepherd, G.G.; Hernandez, G.; Jarvis, M.J.; Meriwether, J.W.; Niciejewski, R.J.; Sipler, D.P.; Tepley, C.A. DWM07 global empirical model of upper thermospheric storm–induced disturbance winds. J. Geophys. Res. 2008, 113, A11319. [Google Scholar] [CrossRef]
- Emmert, J.T.; Picone, J.M. Climatology of globally averaged thermospheric mass density. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Emmert, J.T. Thermospheric mass density: A review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
- Hedin, A.E. A revised thermospheric model based on mass spectrometer and in coherent scatter data—MSIS–83. J. Geophys. Res. 1983, 88, 10170–10188. [Google Scholar] [CrossRef]
- Hedin, A.E. MSIS–86 thermospheric model. J. Geophys. Res. 1987, 92, 4649–4662. [Google Scholar] [CrossRef]
- Hedin, A.E. The atmospheric model in the region 90 to 2000 km. Adv. Space Res. 1988, 8, 19–25. [Google Scholar] [CrossRef]
- Hedin, A.E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 1991, 96, 1159–1172. [Google Scholar] [CrossRef]
- Richmond, A.D.; Ridley, E.C.; Roble, R.G. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 1992, 19, 601–604. [Google Scholar] [CrossRef]
- Peymirat, C.; Richmond, A.D.; Emery, B.A.; Roble, R.G. A magnetosphere– thermosphere–ionosphere electrodynamics general circulation model. J. Geophys. Res. 1998, 103, 17467–17477. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Roble, R. On the feasibility of developing a global atmospheric model extending from the ground to the exosphere. Geophys. Mon. 2000, 123, 53–68. [Google Scholar]
- Visser, P.; Doornbos, E.; IJssel, J.; Encarnacao, J.T. Thermospheric density and wind retrieval from SWARM observations. Earth Planets Space 2013, 65, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE–00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, A12. [Google Scholar] [CrossRef]
- Doornbos, E.; Ijssel, J.; Luhr, H.; Forster, M.; Koppenwallner, G. Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Space. Rock. 2010, 47, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Wahiduzzaman, M.; Yeasmin, A. Seasonal Statistical forecasting of tropical cyclone landfall activities over the North Indian Ocean rim countries. Atmos Res. 2019, 227, 89–100. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A.; Luo, J.J. Seasonal movement prediction of tropical cyclone over the North Indian Ocean by using atmospheric climate variables in statistical models. Atmos. Res. 2020, 245, 105089. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Araghi, A.; Mousavi, B.M.; Adamowski, J.; Malard, J.; Nalley, D.; Hasheminia, S.M. Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Atmos. Res. 2015, 155, 52–72. [Google Scholar] [CrossRef]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Goyal, M.K.; Sharma, A. Wavelet transform based trend analysis for drought variability over stations in India. Eur. Water 2017, 60, 247–253. [Google Scholar]
- Pan, F.; Smerdon, J.E.; Stieglitz, M.; Webster, P. A wavelet approach to reconstructing near–surface temperature time series from observations of subsurface temperatures at several meters depth. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2005. [Google Scholar]
- Westra, S.; Sharma, A. Dominant modes of interannual variability in Australian rainfall analyzed using wavelets. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Nagesh Kumar, D. Predictability of nonstationary time series using wavelet and EMD based ARMA models. J. Hydrol. 2013, 502, 103–119. [Google Scholar] [CrossRef]
- Sang, Y.; Singh, V.; Sun, F.; Chen, Y.; Liu, Y.; Yang, M. Wavelet–based hydrological time series forecasting. J. Hydrol. Eng. 2016, 21, 06016001. [Google Scholar] [CrossRef]
- Kang, S.; Lin, H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J. Hydrol. 2007, 338, 1–14. [Google Scholar] [CrossRef]
- Smith, L.C.; Turcotte, D.L.; Isacks, B.L. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process. 1998, 12, 233–249. [Google Scholar] [CrossRef]
- Bayazit, M.; Onoz, B.; Aksoy, H. Nonparametric streamflow simulation by wavelet or Fourier analysis. Hydrol. Sci. J. 2001, 46, 623–634. [Google Scholar] [CrossRef]
- Labat, D.; Ababou, R.; Mangin, A. Rainfall–runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238, 149–178. [Google Scholar] [CrossRef]
- Dieppois, B.; Diedhiou, A.; Durand, A.; Fournier, M.; Massei, N.; Sebag, D.; Xue, Y.; Fontaine, B. Quasi–decadal signals of Sahel rainfall and West African monsoon since the mid–twentieth century. J. Geophys. Res. 2013, 118, 12–587. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Luo, J.J. A statistical analysis on the contribution of El Niño–Southern Oscillation to the rainfall and temperature over Bangladesh. Meteorol. Appl. Phys. 2020. [Google Scholar] [CrossRef]
- Ozger, M.; Mishra, A.K.; Singh, V.P. Estimating Palmer Drought Severity Index using a wavelet fuzzy logic model based on meteorological variables. Int. J. Climatol. 2011, 31, 2021–2032. [Google Scholar] [CrossRef]
- Özger, M.; Mishra, A.K.; Singh, V.P. Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydrometeorol. 2012, 13, 284–297. [Google Scholar] [CrossRef]
- Ujeneza, E.L.; Abiodun, B.J. Drought regimes in Southern Africa and how well GCMs simulate them. Clim. Dyn. 2014, 44, 1595–1609. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Madhu, S.; Kumar, T.L.; Barbosa, H.; Rao, K.K.; Bhaskar, V.V. Trend analysis of evapotranspiration and its response to droughts over India. Theor. Appl. Climatol. 2015, 121, 41–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; & Schaefer, R.K. Deriving thermospheric temperature from observations by the global ultraviolet imager on the thermosphere ionosphere mesosphere energetics and dynamics satellite. J. Geophys. Res. 2019, 124, 5848–5856. [Google Scholar] [CrossRef]
- Guo, J.; Wan, W.; Forbes, J.M.; Sutton, E.; Nerem, R.S.; Woods, T.N.; Bruinsma, S.; Liu, L. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J. Geophys. Res. 2007, 112, A10308. [Google Scholar] [CrossRef]
- Yuan, L.; Jin, S.; Calabia, A. Distinct thermospheric mass density variations following the September 2017 geomagnetic storm from GRACE and Swarm. J. Atmos. Sol. –Terres Phys. 2019, 184, 30–36. [Google Scholar] [CrossRef]
- Shapiro, A.V.; Rozanov, E.; Egorova, T.; Shapiro, A.I.; Peter, T.; Schmutz, W. Sensitivity of the Earth’s middle atmosphere to short–term solar variability and its dependence on the choice of solar irradiance data set. J. Atmos. Sol. –Terres Phys. 2011, 73, 348–355. [Google Scholar] [CrossRef]
- Qian, L.; Solomon, S.C.; Kane, T.J. Seasonal variation of thermospheric density and composition. J. Geophys. Res. 2009, 114, A01312. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahiduzzaman, M.; Yeasmin, A.; Luo, J.-J.; Ali, M.A.; Bilal, M.; Qiu, Z. Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data. Atmosphere 2020, 11, 897. https://doi.org/10.3390/atmos11090897
Wahiduzzaman M, Yeasmin A, Luo J-J, Ali MA, Bilal M, Qiu Z. Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data. Atmosphere. 2020; 11(9):897. https://doi.org/10.3390/atmos11090897
Chicago/Turabian StyleWahiduzzaman, Md, Alea Yeasmin, Jing-Jia Luo, Md. Arfan Ali, Muhammad Bilal, and Zhongfeng Qiu. 2020. "Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data" Atmosphere 11, no. 9: 897. https://doi.org/10.3390/atmos11090897
APA StyleWahiduzzaman, M., Yeasmin, A., Luo, J. -J., Ali, M. A., Bilal, M., & Qiu, Z. (2020). Statistical Approach to Observe the Atmospheric Density Variations Using Swarm Satellite Data. Atmosphere, 11(9), 897. https://doi.org/10.3390/atmos11090897