A Review of Climate-Smart Agriculture Applications in Cyprus
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
Information Society, Research and Development (R&D)
2.2. Review Selection Method
3. Results
3.1. Robotics
3.2. Internet of Things
3.3. Remote Sensing
3.4. Summary of Results
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Martin, A.; Coolsaet, B.; Corbera, E.; Dawson, N.; Fisher, J.; Franks, P.; Mertz, O.; Pascual, U.; Rasmussen, L.; Ryan, C. Land use intensification: The promise of sustainability and the reality of trade-offs. In Ecosystem Services and Poverty Alleviation; Routledge: London, UK, 2018. [Google Scholar]
- UN. World Population Is Expected to Reach 9.7 Billion in 2050. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 10 July 2020).
- FAO. How to Feed the World in 2050; FAO: Roma, Italy, 2009; pp. 837–839. [Google Scholar]
- FAO. “Climate-smart” Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation; Food and Agriculture Organization of the United Nations: Roma, Italy, 2010. [Google Scholar]
- Hellin, J.; Fisher, E. Climate-smart agriculture and non-agricultural livelihood transformation. Climate 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Zecca, F. The Use of Internet of Things for the Sustainability of the Agricultural Sector: The Case of Climate Smart Agriculture. Int. J. Civil Eng. Technol. 2019, 10, 494–501. [Google Scholar]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [Green Version]
- Balafoutis, A.T.; Evert, F.K.V.; Fountas, S. Smart Farming Technology Trends: Economic and Environmental Effects, Labor Impact, and Adoption Readiness. Agronomy 2020, 10, 743. [Google Scholar] [CrossRef]
- Edan, Y. Food and Agriculture Robotics. In Handbook of Industrial Robotics, 2nd ed.; Nof, S.Y., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Shahbandeh, M. Global Market Size of Smart Farming 2017–2022. Available online: https://www.statista.com/statistics/720062/market-value-smart-agriculture-worldwide/ (accessed on 6 July 2020).
- Siche, R. What is the impact of COVID-19 disease on agriculture? Sci. Agropecu. 2020, 11, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Richards, T.J.; Rickard, B. COVID-19 impact on fruit and vegetable markets. Can. J. Agric. Econ. Rev. Can. D’Agroecon. 2020, 68, 189–194. [Google Scholar] [CrossRef]
- Mitaritonna, C.; Ragot, L. After Covid-19, Will Seasonal Migrant Agricultural Workers in Europe Be Replaced by Robots? CEPII Research Center: Paris, France, 2020. [Google Scholar]
- Edan, Y.; Shufeng, H.; Naoshi, K. Automation in agriculture. In Springer Handbook of Automation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1095–1128. [Google Scholar]
- Hollingum, J. Robots in agriculture. Ind. Robot Int. J. Ind. Serv. Robot. 1999, 26, 438–446. [Google Scholar] [CrossRef]
- Igawa, H.; Tanaka, T.; Kaneko, S.; Tada, T.; Suzuki, S. Visual and tactual recognition of trunk of grape for weeding robot in vineyards. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 4274–4279. [Google Scholar]
- Berenstein, R.; Edan, Y. Human-robot collaborative site-specific sprayer. J. Field Robot. 2017, 34, 1519–1530. [Google Scholar] [CrossRef]
- Bac, C.W.; Henten, E.J.; Hemming, J.; Edan, Y. Harvesting Robots for High-value Crops: State of the art Review and Challenges Ahead. J. Field Robot. 2014, 31, 888–911. [Google Scholar] [CrossRef]
- Bechar, A.; Eben-Chaime, M. Hand-held computers to increase accuracy and productivity in agricultural work study. Int. J. Prod. Perform. Manag. 2014, 63, 194–208. [Google Scholar] [CrossRef]
- Adamides, G.; Stylianou, A.; Kosmas, P.C.; Apostolopoulos, C.D. Factors affecting PC and Internet usage by the rural population of Cyprus. Agric. Econ. Rev. 2013, 14, 16–36. [Google Scholar]
- Murakami, N.; Ito, A.; Will, J.D.; Steffen, M.; Inoue, K.; Kita, K.; Miyaura, S. Development of a teleoperation system for agricultural vehicles. Comput. Electron. Agric. 2008, 63, 81–88. [Google Scholar] [CrossRef]
- Pedersen, M.; Fountas, S.; Blackmore, S. Agricultural robots-applications and economic perspectives. In Service Robot Applications; I-Tech Education and Publishing KG: Rijeka, Croatia, 2008. [Google Scholar]
- Dorsemaine, B.; Gaulier, J.-P.; Wary, J.-P.; Kheir, N.; Urien, P. Internet of things: A definition & taxonomy. In Proceedings of the 2015 9th International Conference on Next Generation Mobile Applications, Services and Technologies, Cambridge, UK, 9–11 September 2015; pp. 72–77. [Google Scholar]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.T.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Awad, M.M. Toward precision in crop yield estimation using remote sensing and optimization techniques. Agriculture 2019, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Lark, T.J.; Brown, J.F.; Gibbs, H.K. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 155, 136–149. [Google Scholar] [CrossRef]
- Zhou, J.; Khot, L.R.; Boydston, R.A.; Miklas, P.N.; Porter, L. Low altitude remote sensing technologies for crop stress monitoring: A case study on spatial and temporal monitoring of irrigated pinto bean. Precis. Agric. 2018, 19, 555–569. [Google Scholar] [CrossRef]
- Hussain, S.; Gao, K.; Din, M.; Gao, Y.; Shi, Z.; Wang, S. Assessment of UAV-Onboard Multispectral Sensor for non-destructive site-specific rapeseed crop phenotype variable at different phenological stages and resolutions. Remote Sens. 2020, 12, 397. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Bank, W. World Bank Open Data. Available online: https://data.worldbank.org (accessed on 3 July 2020).
- Commision, E. Analytical factsheet for Cyprus: Nine Objectives for a Future Common Agricultural Policy. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/by_country/documents/analytical_factsheet_cy.pdf (accessed on 3 July 2020).
- Profile, C. Agriculture and Food: Agile Agribusiness. Available online: https://www.cyprusprofile.com/sectors/agriculture-and-food (accessed on 3 July 2020).
- Commission, E. Statistical Factsheet Cyprus. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-statistical-factsheet-cy_en.pdf (accessed on 3 July 2020).
- Markou, M.; Stylianou, A.; Giannakopoulou, M.; Adamides, G. Identifying business-to-business unfair trading practices in the food supply chain: The case of Cyprus. New Medit 2020, 1, 19–34. [Google Scholar] [CrossRef]
- DoM. The Climate of Cyprus. Available online: http://www.moa.gov.cy/moa/ms/ms.nsf/DMLcyclimate_en/DMLcyclimate_en (accessed on 2 July 2020).
- Adamides, G.; Kalatzis, N.; Stylianou, A.; Marianos, N.; Chatzipapadopoulos, F.; Giannakopoulou, M.; Papadavid, G.; Vassiliou, V.; Neocleous, D. Smart Farming Techniques for Climate Change Adaptation in Cyprus. Atmosphere 2020, 11, 557. [Google Scholar] [CrossRef]
- Savvas, D.; Neocleous, D. Developments in soilless/hydroponic cultivation of vegetables. In Achieving Sustainable Cultivation of Vegetables; Hochmuth, G., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Mayer, P. Guidelines for Writing a Review Article; Zurich-Basel Plant Science Center: Zurich, Switzerland, 2009; Volume 82, pp. 443–446. [Google Scholar]
- CYStat. Survey Results—Ict Usage in Households and by Individuals 2019; Cyprus Statistical Service: Nicosia, Cyprus, 2019. [Google Scholar]
- CYStat. Survey Results—Ict Usage and E-Commerce in Enterprises 2019; Cyprus Statistical Service: Nicosia, Cyprus, 2019. [Google Scholar]
- CYStat. Cyprus in the EU scale. In General Statistics; Statistical Service: Nicosia, Cyprus, 2020; Volume III, p. 35. [Google Scholar]
- EUROSTAT. Europe 2020 Strategy. Available online: https://ec.europa.eu/eurostat/web/europe-2020-indicators (accessed on 2 July 2020).
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, Ver. 2.3 EBSE Technical Report; EBSE: Goyang-si, Korea, 2007. [Google Scholar]
- Zhong, Q. Supporting Study Selection of Systematic Literature Reviews in Software Engineering with Text Mining. In Information Processing Science; University of Oulu: Oulu, Finland, 2017. [Google Scholar]
- Kitchenham, B.; Pretorius, R.; Budgen, D.; Brereton, O.P.; Turner, M.; Niazi, M.; Linkman, S. Systematic literature reviews in software engineering—A tertiary study. Inf. Softw. Technol. 2010, 52, 792–805. [Google Scholar] [CrossRef]
- Edan, Y. Design of an Autonomous Agricultural Robot. Appl. Intell. 1995, 5, 41–50. [Google Scholar] [CrossRef]
- Isaacs, G.W. Robotic applications in agriculture. Acta Hortic. 1986, 123–128. [Google Scholar] [CrossRef]
- Adamides, G.; Christou, G.; Katsanos, C.; Xenos, M.; Hadzilacos, T. Usability Guidelines for the Design of Robot Teleoperation: A Taxonomy. IEEE Trans. Hum. Mach. Syst. 2015, 45, 256–262. [Google Scholar] [CrossRef]
- Adamides, G.; Katsanos, C.; Parmet, Y.; Christou, G.; Xenos, M.; Hadzilacos, T.; Edan, Y. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Appl. Ergon. 2017, 62, 237–246. [Google Scholar] [CrossRef]
- Adamides, G.; Katsanos, C.; Constantinou, I.; Christou, G.; Xenos, M.; Hadzilacos, T.; Edan, Y. Design and development of a semi-autonomous agricultural vineyard sprayer: Human–robot interaction aspects. J. Field Robot. 2017, 34, 1407–1426. [Google Scholar] [CrossRef]
- Adamides, G.; Berenstein, R.; Ben-Halevi, I.; Hadzilacos, T.; Edan, Y. User Interface Design Principles for Robotics in Agriculture: The case of telerobotic navigation and target selection for spraying. In Proceedings of the AFITA 2012 8th Asian Conference for Information Technology in Agriculture, Taipei, Taiwan, 3–6 September 2012; p. 8. [Google Scholar]
- Adamides, G.; Katsanos, C.; Christou, G.; Xenos, M.; Kostaras, N.; Hadzilacos, T. Human-Robot Interaction in Agriculture: Usability Evaluation of three Input Devices for Spraying Grape Clusters. In Proceedings of the EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24–27 June 2013; p. 8. [Google Scholar]
- Adamides, G.; Christou, G.; Katsanos, C.; Kostaras, N.; Xenos, M.; Hadzilacos, T.; Yael, E. A reality-based interaction interface for an agricultural teleoperated robot sprayer. In Proceedings of the International Conference on Robotics and Associated High Technologies and Equipment for Agriculture and Forestry, Madrid, Spain, 22–23 May 2014. [Google Scholar]
- Turja, T.; Oksanen, A. Robot Acceptance at Work: A Multilevel Analysis Based on 27 EU Countries. Int. J. Soc. Robot. 2019, 11, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Gangemi, S.; Miozzi, E.; Teodoro, M.; Briguglio, G.; De Luca, A.; Alibrando, C.; Polito, I.; Libra, M. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol. Med. Rep. 2016, 14, 4475–4488. [Google Scholar] [CrossRef] [Green Version]
- Berenstein, R.; Shahar, O.; Shapiro, A.; Edan, Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 2010, 3, 233–243. [Google Scholar] [CrossRef]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef]
- DoA. Episkopisi Ageladotrofias 2011 (Overview of Cow Breeding 2011); Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 2012.
- DoA. Episkopisi Ageladotrofias 2019 (Overview of Cow Breeding 2019); Ministry of Agriculure, Rural Development and Environment: Nicosia, Cyprus, 2020.
- Adamides, G.; Katsanos, C.; Christou, G.; Xenos, M.; Papadavid, G.; Hadzilacos, T. User interface considerations for telerobotics: The case of an agricultural robot sprayer. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), Paphos, Cyprus, 12 August 2014; pp. 92291W–92298W. [Google Scholar]
- Adamides, G.; Katsanos, C.; Parmet, Y.; Christou, G.; Xenos, M.; Hadzilacos, T.; Edan, Y. HRI usability evaluation of input/output devices and concurrent views presented for a teleoperated agricultural robot. Appl. Ergon. 2016. submitted. [Google Scholar]
- Adamides, G. User Interfaces for Human-Robot Interaction: Application on a Semi-Autonomous Agricultural Robot Sprayer. Ph.D. Thesis, Open University of Cyprus, Nicosia, Cyprus, 2016. [Google Scholar]
- Adamides, G.; Katsanos, C.; Constantinou, I.; Xenos, M.; Hadzilacos, T.; Edan, Y. Design and development of a semi-autonomous agricultural vineyard sprayer. J. Field Robot. 2016. submitted. [Google Scholar]
- Lambrinos, L. Internet of Things in Agriculture: A Decision Support System for Precision Farming. In Proceedings of the 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019; pp. 889–892. [Google Scholar]
- Moysiadis, T.; Adamides, G.; Stylianou, A.; Zotos, N.; Giannakopoulou, M.; Alexiou, G. Use of IoT technologies for irrigation and plant protection: The case for Cypriot fruits and vegetables. In Bio-economy and Agri-production: Concepts and Evidence; Bochtis, D., Achillas, C., Banias, G., Lampridi, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; in press. [Google Scholar]
- Kalatzis, N.; Marianos, N.; Chatzipapadopoulos, F. IoT and data interoperability in agriculture: A case study on the gaiasense TM smart farming solution. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Papadavid, G.; Diofantos, H.G.; Kyriacos, T.; Leonidas, T. Spectral vegetation indices from field spectroscopy intended for evapotranspiration purposes for spring potatoes in Cyprus. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, Toulouse, France, 22 October 2010; p. 782410. [Google Scholar]
- Papadavid, G.C.; Hadjimitsis, D.G.; Toulios, L.; Michaelides, S. Mapping potato crop height and leaf area index through vegetation indices using remote sensing in Cyprus. J. Appl. Remote Sens. 2011, 5, 053526. [Google Scholar] [CrossRef]
- Perdikou, S.; Papadavid, G.; Hadjimitsis, M.; Hadjimitsis, D.; Neofytou, N. A simple method to estimate vegetation indices and crop canopy factors using field spectroscopy for solanum tuberosum during the whole phenological cycle. In Proceedings of the First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), Paphos, Cyprus, 5 August 2013; p. 87950Y. [Google Scholar]
- Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A. Crop evapotranspiration estimation using remote sensing and the existing network of meteorological stations in Cyprus. Adv. Geosci. 2011, 30, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Papadavid, G.; Hadjimitsis, D.; Fedra, K.; Michaelides, S. Smart management and irrigation demand monitoring in Cyprus, using remote sensing and water resources simulation and optimization. Adv. Geosci. 2011, 30, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Papadavid, G.; Fasoula, D.; Hadjimitsis, M.; Perdikou, P.S.; Hadjimitsis, D.G. Image based remote sensing method for modeling black-eyed beans (Vigna unguiculata) Leaf Area Index (LAI) and Crop Height (CH) over Cyprus. Cent. Eur. J. Geosci. 2013, 5, 1–11. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A.; Themistokleous, K.; Papoutsa, C. Assessing soil erosion rate in a catchment area in Cyprus using remote sensing and GIS. Adv. Geosci. 2012, 187–194. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [Google Scholar] [CrossRef]
- Papadavid, G.; Kountios, G.; Michailidis, A. Monitoring and determination of irrigation demand in Cyprus. Glob. Nest J. 2013, 15, 93–101. [Google Scholar]
- Papadavid, G.; Hadjimitsis, M.; Perdikou, S.; Hadjimitsis, D.; Papadavid, C.; Neophtytou, N.; Kountios, G.; Michaelides, A. Application of SEBAL methodology for estimating and disseminating through third generation mobile phones crop water requirements in Cyprus. In Proceedings of the First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), Paphos, Cyprus, 5 August 2013; p. 87951Q. [Google Scholar]
- Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Toulios, L.; Agapiou, A. A comparison of a hydrological and an energy balance model for estimating evapotranspiration of chickpeas at paphos (SW Cyprus) agricultural area. In Advances in Meteorology, Climatology and Atmospheric Physics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 247–252. [Google Scholar]
- Papadavid, G.; Toulios, L.; Hadjimitsis, D.; Kountios, G. Establishing a method for estimating crop water requirements using the SEBAL method in Cyprus. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), Paphos, Cyprus, 12 August 2014; p. 92290L. [Google Scholar]
- Papadavid, G.; Hadjimitsis, D. An image based method for crop yield prediction using remotely sensed and crop canopy data: The case of Paphos district, western Cyprus. In Proceedings of the Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), Paphos, Cyprus, 12 August 2014; p. 92290Z. [Google Scholar]
- Papadavid, G.; Hadjimitsis, D.G. Impact of atmospheric effects on crop yield modelling in Cyprus using Landsat’s satellite imagery and field spectroscopy. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 19 June 2015; p. 95351G. [Google Scholar]
- Themistocleous, K.; Agapiou, A.; Lysandrou, V.; Hadjimitsis, D.G. The use of UAVs for remote sensing applications: Case studies in Cyprus. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications VI, Toulouse, France, 20 October 2015; p. 96440T. [Google Scholar]
- Fetzel, T.; Petridis, P.; Noll, D.; Singh, S.J.; Fischer-Kowalski, M. Reaching a socio-ecological tipping point: Overgrazing on the Greek island of Samothraki and the role of European agricultural policies. Land Use Policy 2018, 76, 21–28. [Google Scholar] [CrossRef]
- Vigan, A.; Lasseur, J.; Benoit, M.; Mouillot, F.; Eugène, M.; Mansard, L.; Vigne, M.; Lecomte, P.; Dutilly, C. Evaluating livestock mobility as a strategy for climate change mitigation: Combining models to address the specificities of pastoral systems. Agric. Ecosyst. Environ. 2017, 242, 89–101. [Google Scholar] [CrossRef]
Application Type | Technology | Crop | Reference |
---|---|---|---|
Spraying | Summit XL robot | Vineyard | [55,59,66,67] |
Spraying | Desktop research and simulation | Not Applicable | [57,58] |
Targeted spraying | Summit XL robot | Vineyard | [56,68,69] |
Application Type | Technology | Crop | Results | Reference |
---|---|---|---|---|
Irrigation and Pest Management | GaiaSense | Potato | A 22% reduction in irrigation—if one pesticide application had been applied earlier, the second could have been avoided | [41] |
Irrigation and Pest Management | Future-intelligence | Strawberries, raspberries, aronia, goji berries, cherry trees, tomatoes | Ongoing project: expected results include 20% reduction in irrigation, 10% reduction in pesticide application | [71] |
Decision support system | Web-based portal and Android app | Data not provided | Ongoing project | [70] |
Application Type | Technology | Crop | Results | Reference |
---|---|---|---|---|
Estimation of crop evapotranspiration | GER-1500 field spectroradiometer | Potatoes | Strong statistical relationship between leaf area index/crop height and spectral vegetation indices. | [73,74,75] |
Estimation of crop evapotranspiration | Meteorological and low-resolution satellite data (MODIS–TERRA) | Not specified | A sophisticated irrigation schedule can be performed using meteorological and satellite image data to estimate evapotranspiration, hence contributing to the reduction of water losses in irrigation. | [76] |
Monitoring of irrigation demand | Remote sensing data combined with the WaterWare model | Not specified | Results have shown that both methods could be used to estimate ETc. | [77] |
Assessment of soil erosion | Remote Sensing, Geographical Information System, and precipitation data | Not Applicable | Reliable quantitative and spatial information concerning soil loss and erosion risk. | [79,80] |
Estimation of crop evapotranspiration | Meteorological data from a wireless sensor network, along with satellite images, spectroradiometer, and sun photometer measurements | Not specified | Provided a novel structural tool to agricultural extension services for the monitoring and determination of irrigation demands in Cyprus. | [81] |
Estimation of spectral vegetation index (NDVI) | Remote sensing, field spectroscopy, and modeling | Black-eyed beans | There are strong statistical relationships between the leaf area index and NDVI. | [78] |
Estimation of crop water requirements | Landsat TM/ ETM+ and SEBAL | Chickpeas | SEBAL adopted to Cypriot conditions. | [82,83,84] |
Estimate and map crop production (yield) | Handheld field spectroradiometer (GER 1500) | Durum wheat | Crop yield can be predicted with acceptable accuracy | [85,86] |
Monitoring of agricultural areas | Unmanned aerial vehicle (UAV) quadcopter fitted with a high-resolution 12 MP GoPro Hero camera | Not specified | Documented the existing overgrazed areas and the seasonal changes in vegetation and soil | [87] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamides, G. A Review of Climate-Smart Agriculture Applications in Cyprus. Atmosphere 2020, 11, 898. https://doi.org/10.3390/atmos11090898
Adamides G. A Review of Climate-Smart Agriculture Applications in Cyprus. Atmosphere. 2020; 11(9):898. https://doi.org/10.3390/atmos11090898
Chicago/Turabian StyleAdamides, George. 2020. "A Review of Climate-Smart Agriculture Applications in Cyprus" Atmosphere 11, no. 9: 898. https://doi.org/10.3390/atmos11090898
APA StyleAdamides, G. (2020). A Review of Climate-Smart Agriculture Applications in Cyprus. Atmosphere, 11(9), 898. https://doi.org/10.3390/atmos11090898