Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv
Abstract
:1. Introduction
2. Methods, Tools, and Measurements
2.1. Study Area
2.2. Methodological Approach
2.2.1. Producing LCZ Map of the City
2.2.2. RS Monitoring of SUHI
2.2.3. Meteorological Monitoring
- The “Shapira neighborhood”, characterized by orthogonal street orientation from north to south (N-S) and east to west (E-W) with a mix of dense and low-rise buildings (1–3 stories). The land cover is mostly paved with few or no trees and it has a small urban garden in the center. A pair of streets was examined; Mesilat Yesharim St. (N-S) and Hizkiyahu St. (E-W) that contains a small neighborhood garden (5000 m2) with irrigated lawn and mature Ficuse and Tipuana tipu trees in its eastern section.
- The “Florentine neighborhood” is characterized by orthogonal street orientation from north to south and east to west with a mix of dense and midrise buildings (3–9 stories). The streets hardly contain any trees or vegetation. A pair of streets was examined, Hertzl St. (N-S) and Wolfson St. (E-W) (Figure 1b).
- The “HaMishtalah neighborhood”, located in the north-eastern part of the city, is characterized by mix of open and midrise buildings (3–9 stories) with green open spaces between the buildings. The meteorological data were taken from the meteorological station “Hakfar Hayrok”, which operated by the Ministry of Environmental Protection. The station is located at the northern edge of the neighborhood and exposed to the sun most day hours.
- Tel Aviv seashore. The data for the Tel Aviv seashore was taken from the “Tel Aviv Coast station”, the official meteorological station of the city that is operated by the Israeli Meteorological Service (IMS). The station is located 50 m from the seacoast, in LCZ 3800 m west of the Florentine neighborhood.
- The area of Palmachim served as a rural reference point. It is an open area of bare soil with bush and scrub tree cover. It is located at the edge of the metropolis area of Tel Aviv.
2.2.4. RS Monitoring of Local Hot Spots
2.2.5. Thermal Sensation Calculation
3. Results
3.1. The LCZ Map of the City of Tel Aviv
3.2. RS Monitoring of SUHI
3.3. Meteorological Monitoring
3.4. RS Monitoring of Local Hot Spots
3.5. Heat Exposure in the City
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Itzhak-Ben-Shalom, H.; Samuels, R.; Potchter, O.; Alpert, P. Recent trends and future predictions until 2060 of urban warming in four Israeli cities employing the RegCM climate model. Am. J. Clim. Chang. 2016, 5, 464–484. [Google Scholar] [CrossRef] [Green Version]
- Potchter, O.; Ben-Shalom, H.I. Urban warming and global warming: Combined effect on thermal discomfort in the desert city of Beer Sheva, Israel. J. Arid. Environ. 2013, 98, 113–122. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981; pp. 231–235. [Google Scholar]
- Oke, T.R. Boundary Layer Climate; Methuem Press: London, UK, 1987; pp. 288–297. [Google Scholar]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using Local Climate Zones-A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Baker, L.A.; Brazel, A.J.; Selover, N.; Martin, C.; McIntyre, N.; Steiner, F.R.; Musacchio, L. Urbanization and warming of Phoenix (Arizona, USA): Impacts, feedbacks and mitigation. Urban Ecosyst. 2002, 6, 183–203. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Steinhoff, D.F. Interactions between urbanization, heat stress, and climate change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Pantavou, K.; Theoharatos, G.; Mavrakis, A.; Santamouris, M. Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Build. Environ. 2011, 46, 339–344. [Google Scholar] [CrossRef]
- Lim, J.; Skidmore, M. Heat Vulnerability and Heat Island Mitigation in the United States. Atmosphere 2020, 11, 558. [Google Scholar] [CrossRef]
- Leal Filho, W.; Icaza, L.E.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the impacts of urban heat islands. A literature-based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor. Appl. Climatol. 2018, 134, 67–81. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A. The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theor. Appl. Climatol. 2015, 121, 631–640. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Souch, C.; Grimmond, S. Applied climatology: Urban climate. Prog. Phys. Geogr. 2006, 30, 270–279. [Google Scholar] [CrossRef]
- Kwok, Y.T.; Schoetter, R.; Lau, K.K.L.; Hidalgo, J.; Ren, C.; Pigeon, G.; Masson, V. How well does the local climate zone scheme discern the thermal environment of Toulouse (France)? An analysis using numerical simulation data. Int. J. Climatol. 2019, 39, 5292–5315. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Unger, J.; Lelovics, E.; Gál, T. Local Climate Zone mapping using GIS methods in Szeged. Hung. Geogr. Bull. 2014, 63, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Tang, Y.; Chen, K.; Han, G. Assessing the heat vulnerability of different local climate zones in the old areas of a Chinese megacity. Sustainability 2019, 11, 2032. [Google Scholar] [CrossRef] [Green Version]
- Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data–Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Clim. 2020, 33, 100631. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Approaches to study urban heat island–abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Middel, A.; Myint, S.W.; Kaplan, S.; Brazel, A.J.; Lukasczyk, J. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J. Photogramm. Remot Sens. 2018, 141, 59–71. [Google Scholar] [CrossRef]
- Bitan, A.; Noy, L.; Turk, R. The impact of the seashore on the climate of Tel-Aviv. Sci. Rep. Inst. Meteorol. Clim. Res. Karlsr. Univ. 1992, 16, 147–160. [Google Scholar]
- Saaroni, H.; Ben-Dor, E.; Bitan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. [Google Scholar] [CrossRef]
- Sofer, M.; Potchter, O. The urban heat island of a city in an arid zone: The case of Eilat, Israel. Theor. Appl. Climatol. 2006, 85, 81–88. [Google Scholar] [CrossRef]
- Potchter, O.; Yaacov, Y.; Oren, G. The magnitude of the urban heat island of a city in an arid zone: The case of Beer Sheva, Israel. Proceeding of the 6th International Conference on Urban Climate, Gothenburg, Sweden, 12–16 July 2006; pp. 450–453. [Google Scholar]
- Saaroni, H.; Ziv, B. Estimating the urban heat island contribution to urban and rural air temperature differences over complex terrain: Application to an arid city. J. Appl. Meteorol. Climatol. 2010, 49, 2159–2166. [Google Scholar] [CrossRef]
- Zhou, B.; Kaplan, S.; Peeters, A.; Kloog, I.; Erell, E. “Surface,”“satellite” or “simulation”: Mapping intra-urban microclimate variability in a desert city. Int. J. Climatol. 2020, 40, 3099–3117. [Google Scholar] [CrossRef] [Green Version]
- Central Bureau of Statistics. 1, Population and Density Per Sq. Km in Localities Numbering 5,000 Residents and More on 31; Central Bureau of Statistics: Jerusalem, Israel, 2018; Volume 12. [Google Scholar]
- Potchter, O.; Saaroni, H. An examination of the map of climatic regions of Israel according to the Koppen classification. Stud. Geogr. Isr. 1998, 15, 179–194. [Google Scholar]
- Bitan, A.; Rubin, S. Climatic Atlas of Israel for Physical and Environmental Planning and Design; Ministry of Transport: Jerusalem, Israel, 1994.
- Tel Aviv Municipality’s GIS Website. Available online: https://gisn.tel-aviv.gov.il/iview2js4/index.aspx (accessed on 12 July 2020).
- USGS. Retrieved from USGS. 2020. Available online: https://www.usgs.gov/land-resources/nli/landsat (accessed on 15 August 2020).
- Sabins, F.F. Remote Sensing: Principles and Applications, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2007. [Google Scholar]
- Pelta, R.; Chudnovsky, A.A.; Schwartz, J. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring. Environ. Pollut. 2016, 208, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anon. Observers’ Handbook; Meteorological Office: HMSO, UK, 1983. [Google Scholar]
- Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. Available online: https://api.planet.com (accessed on 12 July 2020).
- Chui, A.C.; Gittelson, A.; Sebastian, E.; Stamler, N.; Gaffin, S.R. Urban heat islands and cooler infrastructure–measuring near-surface temperatures with hand-held infrared cameras. Urban Clim. 2018, 24, 51–62. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Potchter, O.; Cohen, P.; Lin, T.P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex, environments e application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Cohen, P.; Shashua-Bar, L.; Keller, R.; Gil-Ad, R.; Yaakov, Y.; Lukyanov, V.; Bar (Kutiel), P.; Tanny, J.; Cohen, S.; Potchter, O. Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Build. Environ. 2019, 160, 106–169. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Mayer, H.; Höppe, P. Die Bedeutung des Waldes für die Erholung aus der Sicht der Humanbioklimatologie. Forstwissenschaftliches Centralblatt 1984, 103, 125–131. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Jendritzky, G.; Menz, H.; Schirmer, H.; Schmidt-Kessen, W. Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell); Akademie fur Raumforschung und Landesplanung: Hannover, Germany, 1990; p. 114. [Google Scholar]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Pelta, R.; Chudnovsky, A.A. Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery. Sci. Total Environ. 2017, 579, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.D.; Rozoff, C.M.; Cotton, W.R.; Dias, P.L.S. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound. Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Ribeiro, F.N.; de Oliveira, A.P.; Soares, J.; de Miranda, R.M.; Barlage, M.; Chen, F. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmos. Res. 2018, 214, 174–188. [Google Scholar] [CrossRef]
- Meir, T.; Orton, P.M.; Pullen, J.; Holt, T.; Thompson, W.T.; Arend, M.F. Forecasting the New York City urban heat island and sea breeze during extreme heat events. Weather Forecast. 2013, 28, 1460–1477. [Google Scholar] [CrossRef]
- Balslev, Y.J.; Potchter, O.; Matzarakis, A. Climatic and thermal comfort analysis of the Tel-Aviv Geddes Plan: A historical perspective. Build. Environ. 2015, 93, 302–318. [Google Scholar] [CrossRef]
- Moreno-Garcia, M.C. Intensity and form of the urban heat island in Barcelona. Int. J. Climatol. 1994, 14, 705–710. [Google Scholar] [CrossRef]
- Salvati, A.; Roura, H.C.; Cecere, C. Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, A.; Kolokotsa, D.D.; Fiorito, F. Urban Heat Island in Mediterranean Coastal Cities: The Case of Bari (Italy). Climate 2020, 8, 79. [Google Scholar] [CrossRef]
- Resilience Accelerator Tel Aviv-Yafo|Urban Heat, Equity, Resilience, and the Future of the Public Realm. Available online: https://www.arcgis.com/apps/Cascade/index.html?appid=f713e4bb103f461da55f4cdf33648b00 (accessed on 12 July 2020).
Date | Hour (Local Time) | Air Temperature (°C) | Wind Speed (m/s) |
---|---|---|---|
10 June 2016 | 11:10 | 25.7 | 5.5 |
26 June 2016 | 11:10 | 28.7 | 4.7 |
12 July 2016 | 11:11 | 28.9 | 4.5 |
28 July 2016 | 11:11 | 28.9 | 4 |
13 August 2016 | 11:11 | 29.1 | 4 |
13 June 2017 | 11:10 | 26.1 | 3.5 |
29 June 2017 | 11:10 | 28.7 | 4.5 |
15 July 2017 | 11:10 | 29.6 | 4.5 |
31 July 2017 | 11:11 | 29.9 | 4 |
7 June 2018 | 11:10 | 26.9 | 6.5 |
16 June 2018 | 11:10 | 30.3 | 2.5 |
2 July 2018 | 11:10 | 28.2 | 5 |
18 July 2018 | 11:10 | 29.2 | 6.5 |
3 June 2019 | 11:10 | 25.8 | 3.9 |
19 June 2019 | 11:10 | 28 | 3.1 |
5 July 2019 | 11:11 | 27.9 | 4.1 |
13 August 2019 | 11:10 | 29.9 | 3.3 |
22 August 2019 | 11:10 | 30 | 2.7 |
Variable | Unit | Instrument | Accuracy |
---|---|---|---|
Air temperature | °C | Campbell HMP45C-type | ±0.2 °C |
Relative humidity | % | Campbell HMP45C-type | ±2% |
Wind direction | Degree (°) | Young 05103 anemographs | 3° |
Wind speed | m/s | Young 05103 anemographs | ±0.3 m/s |
LCZ | Site | Street Orientation | Photo on Ground Level | Aerial Photo | Fish Eye Photo | SVF BSF H/W |
---|---|---|---|---|---|---|
2 | Florentine Neighborhood | East-West (Wolfson St.) | 0.23 62.86% 1.5 | |||
2 | Florentine Neighborhood | North-South (Hertzl St.) | 0.35 65.40% 0.77 | |||
3 | Shapira Neighborhood | North-South (Mesilat Yesharim St.) | 0.44 40.42% 0.35 | |||
3 | Shapira Neighborhood | East-West (Hizkiyahu St.) | 0.42 45.79% 0.51 | |||
B | Neighborhood Garden (Shapira) | - | 0.1 - 0 | |||
C | Palmachim | - | 0.9 - 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandelmilch, M.; Ferenz, M.; Mandelmilch, N.; Potchter, O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere 2020, 11, 963. https://doi.org/10.3390/atmos11090963
Mandelmilch M, Ferenz M, Mandelmilch N, Potchter O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere. 2020; 11(9):963. https://doi.org/10.3390/atmos11090963
Chicago/Turabian StyleMandelmilch, Moshe, Michal Ferenz, Noa Mandelmilch, and Oded Potchter. 2020. "Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv" Atmosphere 11, no. 9: 963. https://doi.org/10.3390/atmos11090963
APA StyleMandelmilch, M., Ferenz, M., Mandelmilch, N., & Potchter, O. (2020). Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere, 11(9), 963. https://doi.org/10.3390/atmos11090963