Climatological Study of Ozone over Saudi Arabia
Abstract
:1. Introduction
2. Data and Statistical Procedures
2.1. Data Acquisition
2.2. Statistical Procedures
3. Results and Discussions
3.1. TCO Time Series Homogeneity Test
3.2. Spatial Distribution of Monthly, Seasonal, and Annual TCO
3.3. Coefficient of Variation for TCO
3.4. Analysis of TCO Trend
3.4.1. Mann–Kendall (M–K) Test
3.4.2. Fluctuation of TCO Using Moving Filters
3.5. Cumulative Annual Means
3.6. Analysis of TCO Abrupt Change
3.7. Time-Height Variations of Ozone Mass Mixing Ratio (OMR)
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Station Name | Lon. (° E) | Lat. (° N) | Elev. (m) | Homogeneity (F-Ratio) | ||||
---|---|---|---|---|---|---|---|---|---|
Ann. | Win. | Spr. | Sum. | Aut. | |||||
1 | Turaif | 38.73 | 31.68 | 855 | 0.42 | 0.55 | 0.31 | 1.427 | 0.94 |
2 | Guraiat | 37.28 | 31.40 | 509 | 0.44 | 0.53 | 0.30 | 1.51 | 1.06 |
3 | Arar | 41.13 | 30.90 | 555 | 0.46 | 0.79 | 0.32 | 1.77 | 0.97 |
4 | Jouf | 40.10 | 29.78 | 689 | 0.47 | 0.89 | 0.24 | 1.99 | 1.04 |
5 | Rafha | 43.48 | 29.61 | 449 | 0.59 | 1.03 | 0.29 | 2.48 | 0.94 |
6 | Tabouk | 36.60 | 28.38 | 778 | 0.55 | 0.98 | 0.27 | 1.85 | 1.23 |
7 | Qaisumah | 46.13 | 28.31 | 358 | 0.79 | 1.27 | 0.32 | 2.70 | 0.83 |
8 | Hfr batin | 45.52 | 27.92 | 647 | 0.76 | 1.34 | 0.28 | 2.71 | 0.76 |
9 | Hail | 41.68 | 27.43 | 1015 | 0.71 | 1.44 | 0.24 | 1.99 | 0.77 |
10 | Dammam | 49.81 | 26.45 | 22 | 1.16 | 1.56 | 0.33 | 2.59 | 0.76 |
11 | Qassim | 43.76 | 26.30 | 648 | 0.81 | 1.61 | 0.24 | 1.92 | 0.64 |
12 | Dahran | 50.17 | 26.27 | 17 | 1.10 | 1.58 | 0.33 | 2.57 | 0.78 |
13 | Wejh | 36.48 | 26.20 | 20 | 0.91 | 1.53 | 0.28 | 2.03 | 1.01 |
14 | Ahsa | 49.48 | 25.30 | 179 | 1.01 | 1.68 | 0.29 | 2.02 | 0.62 |
15 | Riyadh | 46.71 | 24.93 | 614 | 0.87 | 1.63 | 0.24 | 1.66 | 0.57 |
16 | Madinah | 39.70 | 24.55 | 654 | 1.01 | 1.72 | 0.25 | 1.56 | 0.75 |
17 | Yanbu | 38.06 | 24.13 | 8 | 1.08 | 1.65 | 0.26 | 1.73 | 0.88 |
18 | Jeddah | 39.19 | 21.7 | 240 | 1.12 | 1.66 | 0.24 | 1.46 | 1.10 |
19 | Taif | 40.55 | 21.48 | 1478 | 1.07 | 1.64 | 0.23 | 1.32 | 1.04 |
20 | Makkah | 39.76 | 21.43 | 240 | 1.12 | 1.63 | 0.24 | 1.45 | 1.10 |
21 | Wadi | 45.25 | 20.50 | 629 | 1.07 | 1.80 | 0.22 | 1.50 | 0.93 |
22 | Baha | 41.65 | 20.30 | 1672 | 1.16 | 1.68 | 0.24 | 1.38 | 1.26 |
23 | Bishah | 46.33 | 19.98 | 1167 | 1.14 | 1.86 | 0.25 | 1.56 | 0.89 |
24 | Khamis-M | 42.80 | 18.30 | 2066 | 1.33 | 1.63 | 0.30 | 1.80 | 1.46 |
25 | Abha | 42.65 | 18.23 | 2090 | 1.31 | 1.60 | 0.30 | 1.78 | 1.51 |
26 | Najran | 44.41 | 17.61 | 1214 | 1.35 | 1.58 | 0.34 | 2.05 | 1.32 |
27 | Sharorh | 47.10 | 17.46 | 720 | 1.28 | 1.61 | 0.36 | 2.46 | 1.05 |
28 | Gizan | 42.58 | 16.88 | 6 | 1.30 | 1.48 | 0.31 | 2.23 | 1.69 |
References
- Fowler, D.; Amann, M.; Anderson, R.; Ashmore, M.; Cox, P.; Depledge, M.; Derwent, D.; Grennfelt, P.; Hewitt, N.; Hov, O.; et al. Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications; The Royal Society: London, UK, 2008; p. 132. [Google Scholar]
- Sinha, P.R.; Sahu, L.K.; Manchanda, R.K.; Sheel, V.; Deushi, M.; Kajino, M.; Schultz, M.G.; Nagendra, N.; Kumar, P.; Trivedi, D.B.; et al. Transport of tropospheric and stratospheric ozone over India: Balloon-borne observations and modeling analysis. Atmos. Environ. 2016, 131, 228–242. [Google Scholar] [CrossRef]
- Saber, A.; Abdel Basset, H.; Morsy, M.; El-Hussainy, F.M.; Eid, M.M. Characteristics of the simulated pollutants and atmospheric conditions over Egypt. NRIAG J. Astron. Geophys. 2020, 9, 402–419. [Google Scholar] [CrossRef]
- Strode, S.A.; Rodriguez, J.M.; Logan, J.A.; Cooper, O.R.; Witte, J.C.; Lamsal, L.N.; Damon, M.; Van Aartsen, B.; Steenrod, S.D.; Strahan, S.E. Trends and variability in surface ozone over the United States. J. Geophys. Res. Atmos. 2015, 120, 9020–9042. [Google Scholar] [CrossRef]
- Ambarsari, N.; Komala, N. Vertical profile variations of ozone in lower stratosphere in Indonesia and influence to upper troposphere ozone based on satellite. In IOP Conference Series: Earth and Environmental Science, Proceedings of the Humanosphere Science School 2017 & The 7th International Symposium for a Sustainable Humanosphere, Bogor, Indonesia, 1–2 November 2017; IOP Publishing: Bristol, UK, 2018; Volume 166. [Google Scholar]
- Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.F.; Shindell, D.T.; Voulgarakis, A.; Skeie, R.B.; Dalsoren, S.B.; Myhre, G.; Berntsen, T.K.; et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 3063–3085. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.B.; McElroy, C.T. Total ozone measurements made with the Brewer ozone spectrophotometer during STOIC. J. Geophys. Res. 1989, 100, 9225–9230. [Google Scholar] [CrossRef]
- Steiner, A.L.; Tawfik, A.B.; Shalaby, A.; Zakey, A.S.; Abdel-Wahab, M.M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, R.A. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region. Clim. Res. 2014, 59, 207–228. [Google Scholar] [CrossRef]
- Fioletov, V.E. Ozone climatology, trends, and substances that control ozone. Atmos.-Ocean 2008, 46, 39–67. [Google Scholar] [CrossRef] [Green Version]
- Nogales, C.G.; Ferrari, P.H.; Kantorovich, E.O.; Lage-Marques, J.L. Ozone therapy in medicine and dentistry. J. Contemp. Dent. Pract. 2008, 9, 75–84. [Google Scholar] [CrossRef]
- Komala, N.; Ambarsari, N. Seasonal Variability of Ozone Vertical Profiles in Indonesia Based on AQUA-AIRS Data. In IOP Conference Series: Earth and Environmental Science, Proceedings of the Humanosphere Science School 2017 & The 7th International Symposium for a Sustainable Humanosphere, Bogor, Indonesia, 1–2 November 2017; IOP Publishing: Bristol, UK, 2018; Volume 166. [Google Scholar]
- Langematz, U. Stratospheric ozone: Down and up through the anthropocene. Chem. Texts 2019, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rozanov, E. Preface: Ozone Evolution in the Past and Future. Atmosphere 2020, 11, 709. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58; WMO: Geneva, Switzerland, 2018; 588p. [Google Scholar]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; Aucamp, P.J.; et al. Environmental effects of ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental E_ects Assessment Panel, update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar]
- Weber, M.; Dikty, S.; Burrows, J.P.; Garny, H.; Dameris, M.; Kubin, A.; Abalichin, J.; Langematz, U. The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. 2011, 11, 11221–11235. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, T.; Singh, S.B.; Srivastava, R.K. Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos. Res. 2011, 99, 505–517. [Google Scholar] [CrossRef]
- Shukla, K.; Srivastava, P.K.; Banerjee, T.; Aneja, V.P. Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: Impacts of seasonality and precursor gases. Environ. Sci. Pollut. Res. 2017, 24, 164–179. [Google Scholar] [CrossRef]
- Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; Du Preez, D.J.; Bègue, N.; Coetzee, G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11, 1216. [Google Scholar] [CrossRef]
- Lawrence, M.G. Export of air pollution from southern Asia and its large-scale effects. Air Pollut. 2004, 131–172. [Google Scholar]
- Duncan, B.N.; West, J.J.; Yoshida, Y.; Fiore, A.M.; Ziemke, J.R. The influence of European pollution on ozone in the Near East and northern Africa. Atmos. Chem. Phys. 2008, 8, 2267–2283. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Jones, D.B.; Worden, J.R.; Noone, D.; Parrington, M.; Kar, J. Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Liu, J.J. Tropospheric Ozone over the Middle East and Its Interannual Variability: An Integrated Analysis with Satellite Observations and a Global Chemical Transport Model. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Xu, W.; Xu, X.; Lin, M.; Lin, W.; Tarasick, D.; Tang, J.; Ma, J.; Zheng, X. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China–Part 2: The roles of anthropogenic emissions and climate variability. Atmos. Chem. Phys. 2018, 18, 773–798. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tarasick, D.W.; Fioletov, V.E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, C.; Jin, J.J.; Liu, G.; Moeini, O. A global ozone climatology from ozone soundings via trajectory mapping: A stratospheric perspective. Atmos. Chem. Phys. 2013, 13, 11441–11464. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project; Report No. 52; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Chandra, S.; Varotsos, C.; Flynn, L.E. The mid-latitude total ozone trends in the northern hemisphere. Geophys. Res. Lett. 1996, 23, 555–558. [Google Scholar] [CrossRef]
- Ogunniyi, J.; Sivakumar, V. Ozone climatology and its variability from ground based and satellite observations over Irene, South Africa (25.5° S; 28.1° E)—Part 2: Total column ozone variations. Atmósfera 2018, 31, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Badawy, A.; Basset, H.A.; Eid, M. Spatial and Temporal Variations of Total Column Ozone over Egypt. J. Earth Atmos. Sci. 2017, 2, 1–16. [Google Scholar]
- Davis, S.M.; Hegglin, M.I.; Fujiwara, M.; Dragani, R.; Harada, Y.; Kobayashi, C.; Long, C.; Manney, G.L.; Nash, E.R.; Potter, G.L.; et al. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys. 2017, 17, 12743–12778. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Cariolle, D.; Deque, M. Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res. 1986, 91, 10825–10846. [Google Scholar] [CrossRef]
- Cariolle, D.; Teyssèdre, H. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: Multi-annual simulations. Atmos. Chem. Phys. 2007, 7, 2183–2196. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Dee, D.; Horányi, A.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. The ERA5 Global Atmospheric Reanalysis at ECMWF as a comprehensive dataset for climate data homogenization, climate variability, trends and extremes. Geophys. Res. Abstr. 2019, 21, 10826. [Google Scholar]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H.; Hofmery, W.L. Climatic Change; WMO Tech. Note 79. WMO No. 195. TP-100; WMO: Geneva, Switzerland, 1966; 79p. [Google Scholar]
- Pearson, E.S.; Hartley, H.O. Biometrika Tables for Statisticians; Cambridge University Press: Cambridge, UK, 1958; 240p. [Google Scholar]
- Tyson, P.D.; Dyer, T.G.; Mametse, M.N. Secular changes in South African rainfall: 1880 to 1972. Q. J. R. Meteorol. Soc. 1975, 101, 817–833. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; Technical Note, No. 143; World Meteorological Organization (WMO): Geneva, Switzerland, 1990; 192p. [Google Scholar]
- Schonwiese, C.D.; Rapp, J. Climate Trend Atlas of Europe Based on Observations 1891–1990; Kluer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Kendall, M.G. The Measurement of Rank Correlation. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1970; pp. 1–18. [Google Scholar]
- Pavia, E.G.; Graef, F. The recent rainfall climatology of the Mediterranean Californias. J. Clim. 2002, 15, 2697–2701. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistics, 1st ed.; John Wiley & Sons: New York, NY, USA, 1971; pp. 97–104. [Google Scholar]
- Mendenhall, W.; Wackerly, D.D.; Sheaffer, R.L. Mathematical Statistics with Applications, 4th ed.; PWS-Kent: Boston, MA, USA, 1990. [Google Scholar]
- Zimmerman, D.W. A note on preliminary tests of equality of variances. Br. J. Math. Stat. Psychol. 2004, 57, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Dobson, G.M.B.; Harrison, D.N. Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1926, 110, 660–693. [Google Scholar] [CrossRef]
- Dobson, A.D. Reminiscences of Arthur Dudley Dobson, Engineer, 1841–1930; Whitcombe and Tombs, Limited: Auckland, New Zealand, 1930. [Google Scholar]
- Dobson, G.M.B.; Harrison, D.N.; Lawrence, J. Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions—Part III. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1929, 122, 456–486. [Google Scholar]
- Dobson, G.M.B.; Brewer, A.W.; Cwilong, B.M. Bakerian lecture Meteorology of the lower stratosphere. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1946, 185, 144–175. [Google Scholar]
- Reed, R.J. The role of vertical motions in ozone-weather relationships. J. Atmos. Sci. 1950, 7, 263–267. [Google Scholar] [CrossRef]
- Aesawy, A.M.; Mayhoub, A.B.; Sharobim, W.M. Seasonal variation of photochemical and dynamical components of ozone in subtropical regions. Theor. Appl. Climatol. 1994, 49, 241–247. [Google Scholar] [CrossRef]
- Lozowski, E.P.; Charlton, R.B.; Nguyen, C.D.; Wilson, J.D. The use of cumulative monthly mean temperature anomalies in the analysis of local interannual climate variability. J. Clim. 1989, 2, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, B.; Agarwal, S.; Rao, J. Ozone and Environment. Radiat. Prot. Environ. 2011, 34, 164–165. [Google Scholar] [CrossRef]
Year | Stations Name | No. of Stations |
---|---|---|
2000 | Wadi Dawaser–Baha–Bishah-Khamis Mushate-Abha- Najran–Sharorh-Gizan | 8 |
2003 | Ahsa–Madinah–Yanbu–Jeddah–Taif-Makkah | 6 |
2005 | Tabouk-Qaisumah-Hfr Batin–Hail-Dammam–Qassim-Dahran-Wejh-Riyadh-N- Riyadh-O | 10 |
2009 | Rafha | 1 |
2012 | Guraiat- Abha- Gizan | 3 |
2014 | Turaif-Arar-Jouf- Tabouk-Hfr Batin- Hail- Dammam- Dahran–Wejh-Ahsa-Riyadh_N- Riyadh_O- Madinah- Yanbu- Jeddah- Taif- Makkah-Wadi Dawaser- Baha- Bishah- Najran- Sharorh | 22 |
2019 | Qaisumah | 1 |
2020 | Qassim-Riyadh-N | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kallas, S.; Al-Mutairi, M.; Abdel Basset, H.; Abdeldym, A.; Morsy, M.; Badawy, A. Climatological Study of Ozone over Saudi Arabia. Atmosphere 2021, 12, 1275. https://doi.org/10.3390/atmos12101275
Al-Kallas S, Al-Mutairi M, Abdel Basset H, Abdeldym A, Morsy M, Badawy A. Climatological Study of Ozone over Saudi Arabia. Atmosphere. 2021; 12(10):1275. https://doi.org/10.3390/atmos12101275
Chicago/Turabian StyleAl-Kallas, Saleha, Motirh Al-Mutairi, Heshmat Abdel Basset, Abdallah Abdeldym, Mostafa Morsy, and Ayman Badawy. 2021. "Climatological Study of Ozone over Saudi Arabia" Atmosphere 12, no. 10: 1275. https://doi.org/10.3390/atmos12101275
APA StyleAl-Kallas, S., Al-Mutairi, M., Abdel Basset, H., Abdeldym, A., Morsy, M., & Badawy, A. (2021). Climatological Study of Ozone over Saudi Arabia. Atmosphere, 12(10), 1275. https://doi.org/10.3390/atmos12101275