Comparisons of Different Methods to Determine Starting Altitudes for Dry Air Atmosphere by GNSS-RO Data
Abstract
:1. Introduction
2. Dry Temperature and Pressure Behaviors Due to Water Vapor Concentrations
3. Dry Air Starting Altitudes Definitions
3.1. Definitions by Water Vapor Mixing Ratios
3.2. Definitions by Wet Refractivity
- ,
4. RO Estimators for Dry Air Starting Altitudes
4.1. Air Temperature
4.2. Difference of the Bending Angle from Its Total Variation
4.3. Saturated Water Vapor Pressure
5. Results
5.1. Mixing Ratio Starting Altitudes Estimati
5.2. Wet Refractivity Starting Altitudes Estimations
6. Water Vapor in the Stratosphere
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wickert, J.; Beyerle, G.; Healy, S.B.; Heise, S.; Michalak, G.; Rothacher, M.; Schmidt, T. GPS based atmospheric sounding with CHAMP: Results achieved after 4 years. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Dubrovnik, Croatia, 19–23 September 2005. [Google Scholar]
- Gorbunov, M.E.; Lauritsen, K.B.; von Benzon, H.-H.; Larsen, G.B.; Syndergaard, S.; Sørensen, M.B. Processing of GRAS/METOP radio occultation data recorded in closed-loop and raw-sampling modes. Atmos. Meas. Tech. 2011, 4, 1021–1026. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.-H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Goody, R.; Anderson, J.; North, G. Testing Climate Models: An Approach. Bull. Am. Meteorol. Soc. 1998, 79, 2541–2549. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nat. Cell Biol. 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Fischbach, F.F. a satellite method for pressure and temperature below 24 km. Bull. Am. Meteorol. Soc. 1965, 46, 528–532. [Google Scholar] [CrossRef]
- Lusignan, B.; Modrell, G.; Morrison, A.; Pomalaza, J.; Ungar, S.G. Sensing the earth’s atmosphere with occultation satellites. Proc. IEEE 1969, 57, 458–467. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Eshleman, V.R. Atmosphere of Venus as Studied with the Mariner 5 Dual Radio-Frequency Occultation Experiment. Radio Sci. 1969, 4, 879–897. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Kliore, A.J.; Patel, I.R. Thermal structure of the atmosphere of Venus from Pioneer Venus radio occultations. Icarus 1982, 52, 320–334. [Google Scholar] [CrossRef]
- Lindal, G.F. The atmosphere of Neptune - an analysis of radio occultation data acquired with Voyager 2. Astron. J. 1992, 103, 967–982. [Google Scholar] [CrossRef]
- Yunck, T.; Lindal, G.; Liu, C.-H. The role of GPS in precise Earth observation. In Proceedings of the IEEE PLANS ’88, Position Location and Navigation Symposium, Record. ‘Navigation into the 21st Century’, Orlando, FL, USA, 29 November–2 December 1988. [Google Scholar]
- Kirchengast, G.H.P. The ACE+ Mission: An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Radio Occultation. In Occultations for Probing Atmosphere and Climate; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Benzon, H.-H.; Høeg, P. Wave optics-based LEO-LEO radio occultation retrieval. Radio Sci. 2016, 51, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Space Phys. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Smith, E.K.; Weintraub, S. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Thayer, G.D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. Climatol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Rüeger, J.M. Refractive Index Formulae for Radio Waves. In Proceedings of the FIG XXII International Congress, Washington, DC, USA, 19–26 April 2002. [Google Scholar]
- Kursinski, E.R.; Kursinski, A. How well do we understand the low latitude, free tropospheric water vapor distribution? In FORMOSAT-3/COSMIC Data Users Workshop 2011; Geophys. Res. Atmos: Taipeh, Taiwan, 2013. [Google Scholar]
- Eyre, J.R. Assimilation of radio occultation measurements into a numerical weather prediction system. ECMWF Tech. Memo. 1994, 199. [Google Scholar]
- Healy, S.B.; Eyre, J.R. Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study. Q. J. R. Meteorol. Soc. 2000, 126, 1661–1683. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Sokolovskiy, S.V.; Anthes, R.A.; Vandenberghe, F. Assimilation of GPS Radio Occultation Data for Numerical Weather Prediction. Terr. Atmos. Ocean. Sci. 2000, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Wamg, B.; Liu, H.; Aathes, R.A.; Matsumura, T.; Zhu, Y.-J. Use of GPS/MET refraction angles in three-dimensional variational analysis. Q. J. R. Meteorol. Soc. 2000, 126, 3013–3040. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J.C.; Purser, R.J. A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos. 2013, 118, 14–28. [Google Scholar] [CrossRef]
- Gorbunov, M.; Stefanescu, R.; Irisov, V.; Zupanski, D. Variational Assimilation of Radio Occultation Observations into Numerical Weather Prediction Models: Equations, Strategies, and Algorithms. Remote. Sens. 2019, 11, 2886. [Google Scholar] [CrossRef] [Green Version]
- Palmer, P.; Barnett, J.J.; Eyre, J.R.; Healy, S.B. A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure. J. Geophys. Res. Space Phys. 2000, 105, 17513–17526. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.; Kirchengast, G.; Schwaerz, M. Integrating uncertainty propagation in GNSS radio occultation retrieval: From bending angle to dry-air atmospheric profiles. Earth Space Sci. 2017, 4, 200–228. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.; Kirchengast, G.; Schwaerz, M. Integrating uncertainty propagation in GNSS radio occultation retrieval: From excess phase to atmospheric bending angle profiles. Atmos. Meas. Tech. 2018, 11, 2601–2631. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Schwaerz, M.; Nielsen, J.K.; Ho, S.-P.; Yuan, Y.-B. A New Algorithm for the Retrieval of Atmospheric Profiles from GNSS Radio Occultation Data in Moist Air and Comparison to 1DVar Retrievals. Remote Sens. 2019, 11, 2729. [Google Scholar] [CrossRef] [Green Version]
- Innerkofler, J.; Kirchengast, G.; Schwärz, M.; Pock, C.; Jäggi, A.; Andres, Y.; Marquardt, C. Precise Orbit Determination for Climate Applications of GNSS Radio Occultation including Uncertainty Estimation. Remote Sens. 2020, 12, 1180. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Leroy, S.S.; Herman, B. The GPS Radio Occultation Technique. Terr. Atmos. Ocean. Sci. 2000, 11, 053. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A. A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res. Space Phys. 2001, 106, 1113–1138. [Google Scholar] [CrossRef]
- Vespe, F.; Benedetto, C.; Pacione, R. The use of refractivity retrieved by radio occultation technique for the derivation of atmospheric water vapor content. Phys. Chem. Earth Parts A/B/C 2004, 29, 257–265. [Google Scholar] [CrossRef]
- Vespe, F.; Persia, T. Derivation of the Water Vapor Content from the GNSS Radio Occultations Observations. J. Atmos. Ocean. Technol. 2006, 23, 936–943. [Google Scholar] [CrossRef]
- Vespe, F. Retrieval of atmospheric humidity profiles from GNSS radio occultation observations. In Proceedings of the 67-th International Astronautical Congress, Guadalajara, Mexico, 26–30 September 2016. [Google Scholar]
- Andrisani, A.; Vespe, F. Humidity Profiles Retrieved From GNSS Radio Occultations by a Non-negative Residual Constrained Least Square Error Method. Front. Earth Sci. 2020, 8, 320. [Google Scholar] [CrossRef]
- Andrisani, A.; Vespe, F. Refinements of the algorithms needed to retrieve atmospheric vertical thermodynamic profiles from GNSS radio occultations. Adv. Space Res. 2020. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Bertiger, W.I.; Leroy, S.S.; Meehan, T.K.; Romans, L.J.; Schofield, J.T.; McCleese, D.J.; Melbourne, W.G.; Thornton, C.L.; et al. Initial Results of Radio Occultation Observations of Earth’s Atmosphere Using the Global Positioning System. Science 1996, 271, 1107–1110. [Google Scholar] [CrossRef]
- Steiner, A.K.; Kirchengast, G.; Ladreiter, H.P. Inversion, error analysis, and validation of GPS/MET occultation data. Ann. Geophys. 1999, 17, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.N.; Ratnam, M.V.; Murthy, B.V.K.; Rao, V.V.M.J.; Mehta, S.K.; Nath, D.; Basha, S.G. Identification of tropopause using bending angle profile from GPS radio occultation (RO): A radio tropopause. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Aparicio, J.M.; Laroche, S. An evaluation of the expression of the atmospheric refractivity for GPS signals. J. Geophys. Res. Space Phys. 2011, 116, 11104. [Google Scholar] [CrossRef]
- UCAR COSMIC Program, 2006: COSMIC-1 Data Products atmPrf. UCAR/NCAR—COSMIC. Available online: https://doi.org/10.5065/ZD80-KD74 (accessed on 1 May 2021).
- UCAR COSMIC Program, 2006: COSMIC-1 Data Products sonPrf. UCAR/NCAR—COSMIC. Available online: https://doi.org/10.5065/ZD80-KD74 (accessed on 1 May 2021).
- The Universal Rawinsonde OBservation Program. Available online: https://www.raob.com/ (accessed on 26 September 2021).
- Algorithms for Inverting Radio Occultation Signals in the Neutral Atmosphere. Available online: https://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/roam05.doc (accessed on 10 May 2021).
- Lohmann, M.S. Dynamic error estimation for radio occultation bending angles retrieved by the full spectrum inversion technique. Radio Sci. 2006, 41, 5005. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.S.; Sokolovskiy, S.V.; Hunt, D.; Rocken, C.; Kuo, Y.-H. Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech. 2011, 4, 2255–2272. [Google Scholar] [CrossRef] [Green Version]
- Rudin, W. Complex measure. In Real and Complex Analysis; McGraw-HiII Book Company: Singapore, 1987; pp. 117–121. ISBN 0-07-100276-6. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Chan, T.F.; Wong, C.-K. Total variation blind deconvolution. IEEE Trans. Image Process. 1998, 7, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, J.M.; Solimini, S. Variational Methods in Image Segmentation; Birkhäuser: Boston, MA, USA, 1994; ISBN -13: 978-3764337209. [Google Scholar]
- Shen, J.; Chan, T.F. Mathematical Models for Local Nontexture Inpaintings. SIAM J. Appl. Math. 2002, 62, 1019–1043. [Google Scholar] [CrossRef]
- Andrisani, A.; Mininni, R.M.; Mazzia, F.; Settanni, G.; Iurino, A.; Tangaro, S.; Tateo, A.; Bellotti, R. Applications of PDEs inpainting to magnetic particle imaging and corneal topography. Opusc. Math. 2019, 39, 453–482. [Google Scholar] [CrossRef]
- Gettelman, A.; Fetzer, E.J.; Eldering, A.; Irion, F.W. The Global Distribution of Supersaturation in the Upper Troposphere from the Atmospheric Infrared Sounder. J. Clim. 2006, 19, 6089–6103. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Welti, A.; Kanji, Z.A.; Lüönd, F.; Stetzer, O.; Lohmann, U. Exploring the Mechanisms of Ice Nucleation on Kaolinite: From Deposition Nucleation to Condensation Freezing. J. Atmos. Sci. 2013, 71, 16–36. [Google Scholar] [CrossRef]
- Gettelman, A.; Collins, W.; Fetzer, E.J.; Eldering, A.; Irion, F.W.; Duffy, P.B.; Bala, G. Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate. J. Clim. 2006, 19, 6104–6121. [Google Scholar] [CrossRef] [Green Version]
- Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. Discuss. 2014, 14, 2071–2104. [Google Scholar] [CrossRef] [Green Version]
- Dymarska, M.; Murray, B.J.; Sun, L.; Eastwood, M.L.; Knopf, D.; Bertram, A.K. Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. J. Geophys. Res. Space Phys. 2006, 111, 04204. [Google Scholar] [CrossRef] [Green Version]
- Gierens, K.; Schumann, U.; Helten, M.; Smit, H.; Marenco, A. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys. 1999, 17, 1218–1226. [Google Scholar] [CrossRef]
- Gierens, K.; Eleftheratos, K.; Shi, L. Technical Note: 30 years of HIRS data of upper tropospheric humidity. Atmos. Chem. Phys. Discuss. 2014, 14, 7533–7541. [Google Scholar] [CrossRef] [Green Version]
- Schiller, C.; Grooß, J.-U.; Konopka, P.; Plöger, F.; dos Santos, F.H.S.; Spelten, N. Hydration and dehydration at the tropical tropopause. Atmos. Chem. Phys. Discuss. 2009, 9, 9647–9660. [Google Scholar] [CrossRef] [Green Version]
- Dessler, A.E.; Schoeberl, M.R.; Wang, T.; Davis, S.; Rosenlof, K.H.; Vernier, J.-P. Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos. 2014, 119, 12588–12598. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, M.; Xia, Y.; Hu, Y.; Son, S.-W. Is there a stratospheric radiative feedback in global warming simulations? Clim. Dyn. 2016, 46, 177–186. [Google Scholar] [CrossRef]
- WMO. Definition of Tropopause and of Significant Levels. In WMO Bullettin; WMO: Geneva, Switzerland, 1957; Volume 4. [Google Scholar]
- Maddox, E.M.; Mullendore, G.L. Determination of Best Tropopause Definition for Convective Transport Studies. J. Atmos. Sci. 2018, 75, 3433–3446. [Google Scholar] [CrossRef]
- Zahn, A.; Brenninkmeijer, C.A. New Directions: A Chemical Tropopause Defined. Atmos. Environ. 2003, 37, 439–440. [Google Scholar] [CrossRef]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.; Birner, T. The Extratropical Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49, 3003. [Google Scholar] [CrossRef] [Green Version]
- Vespe, F.; Pacione, R.; Rosciano, E. A Novel Tool for the Determination of Tropopause Heights by Using GNSS Radio Occultation Data. Atmos. Clim. Sci. 2017, 07, 301–313. [Google Scholar] [CrossRef] [Green Version]
(km) | (K) | (hPa) | (K) | (%) | ||
---|---|---|---|---|---|---|
912 | 14.49 (±2.94) | 217.12 (±9.32) | 146.92 (±84.52) | 0.14 (±2.17) | 0.49 (±1.16) | |
911 | 11.52 (±3.24) | 220.51 (±7.92) | 229.87 (±98.76) | 0.16 (±2.33) | 0.48 (±1.18) | |
911 | 10.28 (±3.06) | 224.24 (±7.52) | 273.16 (±100.86) | 0.21 (±2.20) | 0.44 (±1.15) | |
910 | 9.55 (±2.95) | 227.10 (±7.82) | 302.27 (±104.00) | 0.29 (±2.18) | 0.40 (±1.11) | |
910 | 8.92 (±2.74) | 229.41 (±7.84) | 327.78 (±103.96) | 0.44 (±2.31) | 0.37 (±1.08) | |
910 | 8.43 (±2.56) | 231.46 (±8.13) | 349.06 (±102.65) | 0.62 (±2.38) | 0.35 (±1.07) | |
910 | 7.72 (±2.37) | 235.14 (±8.83) | 383.67 (±105.51) | 0.93 (±2.49) | 0.31 (±1.01) | |
909 | 7.22 (±2.17) | 237.86 (±8.88) | 409.62 (±106.76) | 1.19 (±2.57) | 0.29 (±0.97) | |
896 | 5.78 (±2.14) | 247.70 (±9.21) | 500.86 (±130.56) | 2.59 (±3.51) | 0.10 (±0.72) | |
850 | 4.70 (±2.17) | 255.27 (±9.04) | 580.10 (±148.72) | 4.59 (±4.79) | −0.15 (±0.64) | |
798 | 4.13 (±2.13) | 259.39 (±8.25) | 625.53 (±154.79) | 6.01 (±5.34) | −0.32 (±0.63) | |
726 | 3.88 (±2.05) | 262.15 (±7.92) | 645.69 (±152.67) | 7.46 (±5.92) | −0.45 (±0.65) |
N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Main interval (km) | 11.52 ± 3.24 (9.86 ± 2.02) | 8.43 ± 2.56 (8.01 ± 1.90) | 7.22 ± 2.17 (7.13 ± 1.99) | 6.59 ± 2.15 | 6.14 ± 2.14 | 5.78 ± 2.14 | 10.31 ± 2.48 (9.55 ± 1.67) | 7.63 ± 2.98 (7.24 ± 2.42) | ||
Stratospheric probability (%) | 34.76 | 5.37 | 0.99 | 0.44 | 0.11 | 0 | 20.29 | 4.71 | ||
Temperature (RO) | Best estimator | (*) | (**) | |||||||
MD (km) | −0.52 (1.66) | −0.25 (0.25) | 0.21 (0.31) | 0.03 | 0.50 | −0.07 | 0.25 (1.37) | −0.18 (1.12) | ||
RMSD (km) | 3.65 (2.22) | 2.46 (1.31) | 1.71 (1.42) | 1.71 | 1.72 | 1.82 | 2.78 (1.90) | 2.74 (1.97) | ||
r | 0.08 (0.73) | 0.42 (0.76) | 0.65 (0.74) | 0.65 | 0.67 | 0.61 | 0.16 (0.69) | 0.46 (0.75) | ||
Linear regressor | a | 0.14 (0.83) | 0.59 (0.81) | 0.77 (0.80) | 0.74 | 0.76 | 0.66 | 0.24 (0.68) | 0.76 (1.01) | |
b (km) | 10.00 (0.75) | 3.61 (1.36) | 1.46 (1.14) | 1.72 | 1.12 | 2.03 | 7.78 (2.07) | 1.40 (−1.21) | ||
RMSD (km) | 3.23 (1.39) | 2.33 (1.23) | 1.65 (1.34) | 1.63 | 1.58 | 1.69 | 2.45 (1.21) | 2.64 (1.61) | ||
h(0.9) | a | −0.49 (0.91) | 0.80 (0.92) | 0.91 (0.95) | 0.98 | 1.04 | 0.93 | −0.78 (0.83) | 1.00 (1.11) | |
b (km) | 21.69 (0.90) | 2.95 (1.66) | 1.74 (1.41) | 1.59 | 0.81 | 2.35 | 22.91 (1.99) | 0.89 (−0.32) | ||
MD (km) | 4.75 (1.53) | 1.07 (1.27) | 1.27 (1.33) | 1.48 | 1.58 | 1.86 | 4.32 (1.41) | 1.42 (1.63) | ||
Bending Angle | Best estimator | - | - | - | ||||||
MD (km) | −0.10 (1.98) | 0.17 (0.71) | 0.21 (0.31) | − | - | - | −0.05 (0.99) | −0.08 (0.40) | ||
RMSD (km) | 4.85 (4.07) | 3.73 (3.02) | 3.26 (3.10) | − | - | - | 3.41 (2.49) | 3.94 (3.33) | ||
r | −0.01 (0.29) | 0.20 (0.40) | 0.31 (0.36) | − | - | - | 0.13 (0.55) | 0.31 (0.33) | ||
Linear regressor | a | −0.01 (0.16) | 0.14 (0.24) | 0.21 (0.23) | - | - | − | 0.12 (0.34) | 0.18 (0.25) | |
b (km) | 11.60 (7.92) | 7.26 (5.89) | 5.66 (5.45) | - | - | − | 9.07 (5.95) | 6.30 (5.32) | ||
RMSD (km) | 3.24 (1.93) | 2.53 (1.74) | 2.06 (1.85) | - | - | − | 2.46 (1.39) | 2.92 (2.28) | ||
h(0.9) | a | −0.13 (0.16) | 0.20 (0.30) | 0.36 (0.36) | - | - | − | −0.30 (0.31) | 0.37 (0.26) | |
b (km) | 17.66 (10.54) | 9.11 (7.66) | 7.07 (6.97) | - | - | − | 17.49 (8.06) | 7.54 (8.84) | ||
MD (km) | 4.62 (2.62) | 2.42 (2.29) | 2.52 (2.53) | - | - | − | 4.11 (1.78) | 3.07 (3.18) | ||
Saturation | Best estimator | |||||||||
MD (km) | −0.83 (1.39) | −0.27 (0.24) | −0.14 (−0.04) | 0.29 | 0.20 | 0.13 | −0.12 (0.93) | 0.10 (0.61) | ||
RMSD (km) | 3.79 (2.09) | 2.61 (1.48) | 1.84 (1.54) | 1.83 | 1.91 | 1.93 | 2.78 (1.63) | 3.11 (2.21) | ||
r | 0.05 (0.70) | 0.40 (0.74) | 0.65 (0.73) | 0.66 | 0.66 | 0.67 | 0.15 (0.67) | 0.44 (0.69) | ||
Linear regressor | a | 0.08 (0.70) | 0.48 (0.66) | 0.64 (0.66) | 0.63 | 0.58 | 0.57 | 0.22 (0.68) | 0.45 (0.58) | |
b (km) | 10.68 (1.94) | 4.51 (2.53) | 2.70 (2.44) | 2.23 | 2.46 | 2.42 | 8.06 (2.39) | 4.14 (2.69) | ||
RMSD (km) | 3.23 (1.45) | 2.35 (1.27) | 1.66 (1.35) | 1.62 | 1.60 | 1.59 | 2.45 (1.24) | 2.67 (1.74) | ||
h(0.9) | a | −0.54 (0.82) | 0.70 (0.77) | 0.74 (0.74) | 0.81 | 0.77 | 0.73 | −0.64 (0.83) | 0.57 (0.71) | |
b (km) | 21.99 (2.30) | 3.85 (2.94) | 3.24 (3.18) | 2.48 | 2.90 | 3.35 | 20.81 (2.31) | 4.92 (3.39) | ||
MD (km) | 4.69 (1.71) | 1.09 (1.29) | 1.26 (1.33) | 1.46 | 1.67 | 1.91 | 3.98 (1.43) | 1.67 (1.70) |
N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Main interval (km) | 11.52 ± 3.24 (9.86 ± 2.02) | 8.43 ± 2.56 (8.01 ± 1.90) | 7.20 ± 2.17 (7.13 ± 1.99) | 6.59 ± 2.15 | 6.14 ± 2.14 | 5.76 ± 2.16 | 10.31 ± 2.48(9.55 ± 1.67) | 7.63 ± 2.98(7.24 ± 2.42) | ||
Stratospheric presence (%) | 34.76 | 5.37 | 0.99 | 0.44 | 0.11 | 0 | 20.29 | 4.71 | ||
Temperature (b) | Best estimator | (*) | (**) | |||||||
MD (km) | −0.47 (1.72) | −0.15 (0.34) | −0.35 (−0.25) | 0.28 | 0.02 | −0.34 | 0.31 (1.37) | −0.03 (0.42) | ||
RMSD (km) | 3.66 (2.28) | 2.38 (1.25) | 1.66 (1.34) | 1.58 | 1.55 | 1.56 | 2.77 (1.90) | 2.57 (1.62) | ||
r | 0.08 (0.72) | 0.45 (0.79) | 0.69 (0.77) | 0.71 | 0.72 | 0.74 | 0.17 (1.69) | 0.52 (0.76) | ||
Linear regressor | a | 0.14 (0.73) | 0.64 (0.84) | 0.79 (0.81) | 0.80 | 0.78 | 0.77 | 0.25 (0.68) | 0.84 (1.01) | |
b (km) | 9.99 (1.39) | 3.09 (1.00) | 1.79 (1.56) | 1.06 | 1.36 | 1.58 | 7.63 (2.07) | 1.25 (−0.53) | ||
RMSD (km) | 3.23 (1.41) | 2.28 (1.17) | 1.57 (1.26) | 1.51 | 1.49 | 1.45 | 2.44 (1.21) | 2.55 (1.57) | ||
h(0.9) | a | −0.47 (0.96) | 0.93 (0.94) | 0.93 (0.95) | 0.99 | 0.98 | 0.96 | −0.76 (0.84) | 1.11 (1.11) | |
b (km) | 21.42 (0.34) | 1.56 (1.33) | 1.95 (1.75) | 0.98 | 1.46 | 1.97 | 22.52 (1.77) | 0.34 (0.20) | ||
MD (km) | 4.74 (1.60) | 0.87 (1.16) | 1.11 (1.17) | 1.21 | 1.35 | 1.39 | 4.18 (1.41) | 1.15 (1.47) |
Stratospheric probability (%) | 34.76 | 5.37 | 0.99 | 20.29 | 4.71 | |
Stratospheric conditioned probability with respect to the estimator to be above the tropopause (%) | 39.30 | 6.15 | 1.12 | 22.80 | 5.31 | |
39.32 | 6.22 | 1.13 | 22.63 | 5.37 | ||
38.03 | 5.61 | 1.21 | 21.67 | 5.00 | ||
37.54 | 4.98 | 1.33 | 21.10 | 4.65 | ||
37.99 | 5.02 | 1.43 | 20.61 | 4.84 | ||
38.30 | 4.84 | 1.55 | 20.50 | 4.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrisani, A.; Vespe, F. Comparisons of Different Methods to Determine Starting Altitudes for Dry Air Atmosphere by GNSS-RO Data. Atmosphere 2021, 12, 1276. https://doi.org/10.3390/atmos12101276
Andrisani A, Vespe F. Comparisons of Different Methods to Determine Starting Altitudes for Dry Air Atmosphere by GNSS-RO Data. Atmosphere. 2021; 12(10):1276. https://doi.org/10.3390/atmos12101276
Chicago/Turabian StyleAndrisani, Andrea, and Francesco Vespe. 2021. "Comparisons of Different Methods to Determine Starting Altitudes for Dry Air Atmosphere by GNSS-RO Data" Atmosphere 12, no. 10: 1276. https://doi.org/10.3390/atmos12101276
APA StyleAndrisani, A., & Vespe, F. (2021). Comparisons of Different Methods to Determine Starting Altitudes for Dry Air Atmosphere by GNSS-RO Data. Atmosphere, 12(10), 1276. https://doi.org/10.3390/atmos12101276