A New Method to Estimate Heat Exposure Days and Its Impacts in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Data
2.2. Statistical Methods
3. Results
3.1. Temperature Distribution in China
3.2. Multiple Linear Regression Analysis
3.3. Changes in Temperature over the Past 20 Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Astrom, D.O.; Forsberg, B.; Ebi, K.L.; Rocklov, J. Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Clim. Chang. 2013, 3, 1050–1054. [Google Scholar] [CrossRef]
- Ye, D.X.; Yin, J.F.; Chen, Z.H.; Zheng, Y.F.; Wu, R.J. Spatiotemporal change characteristics of summer heat waves in china in 1961-2010. Clim. Change Res. 2013, 9, 15–20. [Google Scholar]
- Huang, J.X.; Wang, J.F.; Yu, W.W. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China. Int. J. Environ. Res. Public Health 2014, 11, 3982–3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC Report (2018). Available online: www.ipcc.ch/sr15/download/ (accessed on 30 July 2021).
- Yin, C.; Yang, F.; Wang, J.L.; Ye, Y.X. Spatiotemporal Distribution and Risk Assessment of Heat Waves Based on Apparent Temperature in the One Belt and One Road Region. Remote Sens. 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ding, Y.H.; Li, W.J. Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J. Meteor. Res. 2017, 31, 455–467. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 2017, 3, e1700066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.M.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.L.; Rocklov, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Li, T.T.; Horton, R.M.; Kinney, P.L. Projections of seasonal patterns in temperature related deaths for Manhattan, New York. Nat. Clim. Change 2013, 3, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yin, P.; Zhou, M.G.; Ou, C.Q.; Guo, Y.M.; Gasparrini, A.; Liu, Y.N.; Yue, Y.J.; Gu, S.H.; Sang, S.W. Cardiovascular mortality risk attributable to ambient temperature in China. Heart 2015, 101, 1966–1972. [Google Scholar] [CrossRef]
- Ishigami, A.; Hajat, S.; Kovats, R.S.; Bisanti, L.; Rognoni, M.; Russo, A.; Paldy, A. An ecological time-series study of heat-related mortality in three European cities. Environ. Health 2008, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Lim, Y.H.; Dang, T.N.; Seposo, X.; Honda, Y.; Guo, Y.L.L.; Jang, H.M.; Kim, H. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries. Sci. Rep. 2017, 7, 10207. [Google Scholar] [CrossRef] [Green Version]
- Lindeboom, W.; Alam, N.; Begum, D.; Streatfield, P.K. The association of meteorological factors and mortality in rural Bangladesh, 1983–2009. Global. Health Action. 2012, 5, 61–73. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.G.; Ren, Z.P.; Li, M.M.; Wang, B.G.; Liu, D.L.; Ou, C.Q.; Yin, P.; Sun, J.M.; Tong, S.L. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.M.; Wang, B.G.; Zhou, M.G.; Li, M.M.; Tong, S.L.; Meng, B.H.; Guo, Y.M.; Liu, Q.Y. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.F.; Ren, Z.P.; Li, J.; Guo, Y.M. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun. 2019, 10, 4640. [Google Scholar] [CrossRef] [Green Version]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Surface Meteorological Observation Data. Available online: data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html (accessed on 30 August 2021).
- Surface Meteorological Observation Stations. Available online: http://data.cma.cn/article/showPDFFile.html?file=/pic/static/doc/A/A.0012.0001/SURF_CHN_MUL_HOR_STATION.pdf (accessed on 30 August 2021).
- China Meteorological Administration. Surface Meteorological Observation Criterion; Meteorological Press, 1979, 2003. [Google Scholar]
- National Earth System Science Data Center. Available online: www.geodata.cn/data/datadetails.html?dataguid=137865983565018&docId=6333. (accessed on 30 May 2021).
- Wang, J.; Meng, B.; Pei, T.; Du, Y.Y.; Zhang, J.Q.; Chen, S.Y.; Tian, B.; Zhi, G.Q. Mapping the exposure and sensitivity to heat wave events in China’s megacities. Sci. Total Environ. 2021, 755, 142734. [Google Scholar] [CrossRef] [PubMed]
- Luan, G.J.; Yin, P.; Wang, L.J.; Zhou, M.G. The temperature–mortality relationship: An analysis from 31 Chinese provincial capital cities. Int. J. Environ. Health Res. 2018, 28, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Bi, J.; Chen, J.; Chen, X.D.; Huang, L.; Zhou, L. In influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci. Total Environ. 2015, 507, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Ding, G.Q.; Gu, S.H.; Bi, P.; Su, B.D.; Qin, D.H.; Xu, G.Z.; Liu, Q.Y. The effects of summer temperature and heat wave on heat-related illness in a coastal city of China, 2011–2013. Environ. Res. 2014, 132, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.L.; Lao, X.Q.; Rutherford, S.; Xu, Y.J.; Xu, X.J.; Lin, H.L.; Liu, T.; Luo, Y.; Xiao, J.P.; Hu, M.J. The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China. Sci. Total Environ. 2014, 482–483, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.M.; Gasparrini, A.; Armstrong, B.; Li, S.S.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho, M.D.; Leone, M.; Pan, X.C. Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology 2014, 25, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.M.; Gasparrini, A.; Li, S.S.; Sera, F.; Vicedo-Cabrera, A.M.; Coelho, M.D.; Saldiva, P.H.; Lavigne, E.; Tawatsupa, B.; Punnasiri, K. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Xu, D.D.; He, M.Z.; Sun, Q.H.; Chen, C.; Wang, W.T.; Zhu, P.F.; Li, T.T. The effect of high temperature on cause-specific mortality: A multi-county analysis in China. Environ. Int. 2017, 106, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Hajat, S.; Kosatky, T. Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Commun. H. 2010, 64, 753–760. [Google Scholar] [CrossRef]
- Medina-Ramon, M.; Schwartz, J. Temperature, temperature extremes, and mortality: A study of acclimatization and effect modification in 50 United States cities. Occup. Environ. Med. 2007, 64, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Zheng, M.X.; Zhang, J.H.; Shi, L.M.; Zhang, D.; Sharma, T.P.; Prodhan, F.A. Mapping heat-related risks in northern jiangxi province of china based on two spatial assessment frameworks approaches. Int. J. Environ. Res. Public Health 2020, 17, 6584. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends. Sustain. Cities Soc. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Zhan, M.J.; Li, X.C.; Sun, H.M.; Zhai, J.Q.; Jiang, T.; Wang, Y.J. Changes in Extreme Maximum Temperature Events and Population Exposure in China under Global Warming Scenarios of 1.5 and 2.0 °C: Analysis Using the Regional Climate Model COSMO-CLM. J. Meteoral Res. 2018, 32, 99–112. [Google Scholar] [CrossRef]
- Huang, D.P.; Zhang, L.; Gao, G.; Sun, S. Projected changes in population exposure to extreme heat in China under a RCP8.5 scenario. J. Geogr. Sci. 2018, 28, 1371–1384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fan, J.L.; Zhang, F.C. Spatiotemporal trends of temperature and precipitation extremes across contrasting climatic zones of China during 1956–2015. Theor. Appl. Climatol. 2019, 138, 1877–1897. [Google Scholar] [CrossRef]
- Guan, Y.H. Extreme Climate Change and Its Trend Prediction in the Yangtze River Basin. Ph.D. Thesis, Northwest A&F University, Shannxi, China, 2015. [Google Scholar]
- Yu, Y.R.; Duan, S.B.; Li, Z.L.; Chang, S.; Xing, Z.F.; Leng, P.; Gao, M.F. Interannual Spatiotemporal Variations of Land Surface Temperature in China from 2003 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1783–1795. [Google Scholar]
- Han, S.J.; Tang, Q.H.; Xu, D.; Yang, Z.Y. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006. Theor. Appl. Climatol. 2019, 135, 1595–1607. [Google Scholar] [CrossRef]
- Qiao, L.; Wu, L.R.; Zhang, G.J. Temporal and spatial changes of land surface temperature in China in recent 50 years. Bull. Soil Water Conserv. 2015, 35, 323–326. [Google Scholar]
- Xu, W.; Sun, J.Q.; Liu, Y.X.; Xiao, Y.; Tian, Y.Z.; Zhao, B.X.; Zhang, X.Q. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar]
- Song, Y.M.; Chen, B.; Kwan, M.P. How does urban expansion impact people’s exposure to green environments? A comparative study of 290 Chinese cities. J. Clean Prod. 2020, 246, 119108. [Google Scholar] [CrossRef]
- Liu, X.D.; Cheng, Z.G.; Yan, L.B.; Yin, Z.Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Biardeau, L.T.; Davis, L.W.; Gertler, P.; Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 2020, 3, 25–28. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
x1 | The number of heat exposure days |
x2 | GDP per capita |
x3 | Proportion of elderly population (≥65 years of age) |
x4 | Urban population ratio |
x5 | Latitude |
x6 | Climate zone |
x7 | Study year |
Climate Zone | Number of Stations | AMT (°C) | MMT (°C) | Heat Exposure Days (Days) |
---|---|---|---|---|
Frigid temperate zone | 4 | −3.5 (−3.8, −3.2) | 15.9 (15.1, 16.9) | 54 (52, 55) |
Middle temperate zone | 439 | 6.2 (1.1, 10.2) | 20.6 (16.5, 23.8) | 65 (55, 80) |
Warm temperate zone | 620 | 13.3 (9.7, 15.6) | 24.6 (20.9, 26.7) | 69 (55, 84) |
North subtropical zone | 258 | 16.7(14.9,18) | 25.6 (22.8, 27.3) | 78 (62, 95) |
Middle subtropical zone | 497 | 17.5 (14.2, 20.2) | 25.1 (19.7, 28.5) | 78 (63, 99) |
South subtropical zone | 195 | 21.2 (16.8,23.5) | 26.6 (21, 28.9) | 85 (66, 102) |
Marginal tropical zone | 26 | 23 (18.2,25.4) | 26.3 (21.4, 29.1) | 97 (81, 113) |
Tibetan Plateau area | 103 | 6.9 (−0.8, 15.8) | 14.5 (8.2,22.1) | 77 (58, 95) |
Locations (Province) | (Longitude, Latitude) | Study Period | AMT (°C) | Climate Zone |
---|---|---|---|---|
Harbin (Heilongjiang) | (127.9°, 45.6°) | 2008–2013 | 5.1 | 1 |
Changchun (Jilin) | (125.2°, 43.9°) | 2008–2013 | 5.9 | 1 |
Urumqi (Xinjiang) | (88.3°, 43.4°) | 2006–2007 | 8.5 | 1 |
Shenyang (Liaoning) | (123.5°, 41.7°) | 2005–2008 | 6.4 | 1 |
Hohhot (Inner Mongolia) | (111.7°, 40.8°) | 2008–2013 | 7.6 | 1 |
Anshan (Liaoning) | (123.3°, 40.3°) | 2004–2006 | 10.7 | 1 |
Beijing (Beijing) | (116.5°, 39.8°) | 2007–2008 | 10.5 | 2 |
Tianjin (Tianjin) | (117.1°, 39.1°) | 2005–2008 | 11.8 | 2 |
Yinchuan (Ningxia) | (106.2°, 38.5°) | 2008–2013 | 10.3 | 1 |
Taiyuan (Shanxi) | (112.6°, 37.8°) | 2004–2008 | 10.1 | 2 |
Jinan (Shandong) | (117°, 36.7°) | 2008–2013 | 14.5 | 2 |
Lanzhou (Gansu) | (105.8°, 34.6°) | 2004–2008 | 10.4 | 1 |
Zhengzhou(Henan) | (113.3°, 34.6°) | 2008–2013 | 15.6 | 2 |
Xi’an (Shaanxi) | (107.1°, 34.4°) | 2004–2008 | 11.3 | 2 |
Nanjing (Jiangsu) | (118.8°, 32°) | 2008–2013 | 16.3 | 3 |
Hefei (Anhui) | (117.2°, 31.9°) | 2008–2013 | 16.6 | 3 |
Shanghai (Shanghai) | (121.4°, 31.2°) | 2008–2012 | 17.4 | 3 |
Wuhan (Hubei) | (114.1°, 30.6°) | 2003–2005 | 16.4 | 3 |
Hangzhou (Zhejiang) | (120.2°, 30.2°) | 2002–2004 | 18.5 | 3 |
Changsha (Hunan) | (112.9°, 28.2°) | 2008–2013 | 18.3 | 4 |
Guiyang (Guizhou) | (106.4°, 26.4°) | 2008–2013 | 14.4 | 4 |
Fuzhou (Fujian) | (119.3°, 26.1°) | 2004–2006 | 19.8 | 4 |
Guangzhou (Guangdong) | (113.3°, 23.2°) | 2007–2008 | 21.2 | 5 |
Haikou (Hainan) | (110.3°, 19.7°) | 2008–2013 | 24.2 | 6 |
Percentage Increase | p-Value | |
---|---|---|
x1 (The number of heat exposure days) | 0.37 | 0.08 |
x2 (GDP per capita) | 0.55 | 0.005 |
x3 (Urban population ratio) | 0.55 | 0.005 |
x4 (Proportion of elderly population) (≥65 years of age) | 0.45 | 0.03 |
x5 (Study year) | −0.43 | 0.03 |
x6 (Latitude) | −0.21 | 0.33 |
x7 (Climate zone) | / | / |
Parameters | Estimate | Std. Error | p-Value |
---|---|---|---|
Intercept | −28.1 | 7.48 | 0.002 ** |
x1 (The number of heat exposure days) | 0.11 | 0.04 | 0.01 ** |
x2 (GDP per capita) | 7.25 × 10−5 | 3.96 × 10−5 | 0.09 ˙ |
x3 (Urban population ratio) | 0.16 | 0.062 | 0.02 * |
x4 (Proportion of elderly population) (≥65 years of age) | 1.18 | 0.59 | 0.06 ˙ |
x7 (Climate zone) | Dummy variable * |
Climate Zone | AMT | MMT | Heat Exposure Days | |||
---|---|---|---|---|---|---|
Changes/20a (°C) | Increased Proportion * | Changes/20a (°C) | Increased Proportion * | Changes/20a (Days) | Increased Proportion * | |
Frigid temperate zone | 1.43 (1.2, 1.6) | 100% | −1.3 (−2.4, −0.1) | 0% | 3 (−24, 30) | 75% |
Middle temperate zone | 1.12 (−0.1, 2.2) | 93% | −0.9 (−3.6, 2.5) | 33% | −12 (−49, 26) | 31% |
Warm temperate zone | 1.1 (0, 2.0) | 95% | −0.4 (−2.4, 1.6) | 34% | −9 (−56, 36) | 38% |
North subtropical zone | 0.96 (0.2, 1.9) | 96% | −0.5 (−3.4, 3.2) | 39% | −10 (−63, 36) | 38% |
Middle subtropical zone | 0.9 (0, 1.6) | 95% | 0.8 (−1.5, 3.6) | 69% | 0 (−47, 50) | 50% |
South subtropical zone | 0.89 (−0.1, 1.6) | 93% | 0.6 (−0.8, 2.2) | 67% | −8 (−51, 35) | 36% |
Marginal tropical zone | 0.84 (0.2, 1.4) | 96% | 0.8 (−0.5, 1.5) | 81% | −1 (−32, 34) | 50% |
Tibetan Plateau area | 0.76 (−0.2, 1.6) | 88% | 1 (−0.7, 3.2) | 74% | 1 (−40, 40) | 55% |
Overall | 0.98 (0, 1.9) | 95% | 0.1 (−4.1, 4) | 54% | −7 (−53, 37) | 40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Wang, D.; Ren, Z.; Yin, Q.; Gao, Y. A New Method to Estimate Heat Exposure Days and Its Impacts in China. Atmosphere 2021, 12, 1294. https://doi.org/10.3390/atmos12101294
Guo G, Wang D, Ren Z, Yin Q, Gao Y. A New Method to Estimate Heat Exposure Days and Its Impacts in China. Atmosphere. 2021; 12(10):1294. https://doi.org/10.3390/atmos12101294
Chicago/Turabian StyleGuo, Guizhen, Dandan Wang, Zhoupeng Ren, Qian Yin, and Yunbing Gao. 2021. "A New Method to Estimate Heat Exposure Days and Its Impacts in China" Atmosphere 12, no. 10: 1294. https://doi.org/10.3390/atmos12101294
APA StyleGuo, G., Wang, D., Ren, Z., Yin, Q., & Gao, Y. (2021). A New Method to Estimate Heat Exposure Days and Its Impacts in China. Atmosphere, 12(10), 1294. https://doi.org/10.3390/atmos12101294