Potential Contribution of Climate Conditions on COVID-19 Pandemic Transmission over West and North African Countries
Abstract
:1. Introduction
2. Data and Methods
2.1. Surveillance COVID-19 Data
2.2. Climate Dataset
- (i)
- The Maghreb (North Africa) zone is mainly characterized by winter rains and summer drought [46]. The rainfall regime is variable but predominantly bimodal in the northern part, with peaks during fall and spring. The rainy seasons correspond with the short days—cool temperature period (from November to April). This category includes hyper-humid to hyper-arid bioclimates, with mean annual rainfalls of 2330 mm over the northeast of Algeria and 1530 mm over the northwest of Tunisia [34] decreasing to virtually zero in the central-eastern Sahara. The mean annual temperature may vary from less than 10 °C in the highlands of Algeria and Morocco to 25 °C in the north and central Sahara [34].
- (ii)
- The Sahel region represents a transition zone between the Saharan desert and the wet climate of tropical Africa. The Sahelian countries have a tropical semi-arid climate which is typically hot, sunny, dry, and somewhat windy. The bio-climate is characterized by a monomodal (unimodal) type of rainfall distribution pattern; i.e., there is only one annual peak in the rainy season, which is lagged with the summer solstice by a 1–2-month time lag [34,45].
- (iii)
- The Gulf of Guinea with an equatorial bio-climate that is constantly humid is characterized by a bimodal rainfall distribution pattern (i.e., there are two peaks in the rainy season following the seasonal position Intertropical Convergence Zone (ITCZ)), although some climatic characteristics can be found in countries such as Nigeria with hot-dry, hot-humid, temperate-dry, temperate-humid, and temperate-dry with a cool climate [47].
2.3. Statistical Analysis
- (i)
- The Kendall rank correlation non-parametric test τ is shown in Equation (2), where concor represents the number of concordant pairs. In contrast, discor represents the discordant pairs, and n is the number of pairs [48].
- (ii)
- The Spearman rank correlation non-parametric test rs is described in Equation (3) below, where di represents the difference between the ranks of two parameters and the number of alternatives [48].
3. Results
3.1. Spatiotemporal Variability of COVID-19 Cases
3.2. Spatiotemporal Variability of Climate Parameters
3.3. Relationship between COVID-19 and Climate Parameters
- (a)
- Over the Maghreb, results imply that the COVID-19 transmission is strongly influenced by a decrease in temperature that connects to the reduction of humidity and water vapor. It may partly explain the high number of COVID-19 pandemic transmission observed in autumn over the Maghreb countries (Figure 4a and Figure S2a).
- (b)
- Over the Sahel, the results highlight that the COVID-19 pandemic transmission prefers warm and humid environmental conditions. In other words, COVID-19 is strongly influenced by an increase in temperature associated with an increase in humidity and water vapor. Such findings contrast with the results found over the Maghreb countries and other studies suggesting that summer weather could reduce COVID-19 transmission [52] but confirm some previous findings (e.g., [53]) and may partly explain the high number of COVID-19 pandemic transmission (i.e., the first wave) experienced in most countries during the period May–August (Figure 4b and Figure S2b).
- (c)
- Over the Gulf of Guinea, results highlight that the COVID-19 transmission is enhanced by decreased temperature associated with a high increase in humidity and water vapor conditions. In other words, COVID-19 transmission over this area may be strongly enhanced by the observed high level of humidity and water vapor. Such findings are consistent with prior findings for influenza over the tropical countries [21] and may also strongly contribute to the observed peak of the cases experienced in the Gulf of Guinea countries during May–August (Figure 4c, Figure 6e and Figure S2c).
TAS (%) | SH (%) | WV (%) | DD | Other Factors (%) | |
---|---|---|---|---|---|
Algeria | 0.186 * | 0.607 * | 0.004 * | 93.732 * | 5.467 * |
Egypt | 14.592 * | 3.155 * | 0.531 *** | 56.799 | 24.921 |
Libya | 17.757 * | 0.263 | 14.418 * | 4.983 * | 62.576 |
Morocco | 59.81 * | 2.411 * | 0.444 | 2.909 * | 34.419 |
Tunisia | 36.792 * | 3.426 * | 3.316 * | 2.322 * | 54.142 |
Maghreb | 61.869 * | 0.785 ** | 0.278 | 0.961 * | 36.105 |
Burkina-Faso | 0.279 | 0.187 | 0.371 | 0.660 | 98.500 |
Mal | 6.147 * | 8.791 * | 3.316 * | 0.479 | 81.265 |
Niger | 2.100 * | 1.198 ** | 11.000 * | 26.223 * | 59.477 |
Senegal | 0.363 | 34.627 * | 0.007 | 27.012 * | 37.988 |
Sahel | 2.419 * | 7.883 * | 16.432 * | 18.697 * | 54.566 |
Ivory-coast | 18.273 * | 0.171 | 6.788 * | 9.965 * | 64.800 |
Ghana | 19.255 * | 0.011 | 0.071 * | 4.226 * | 76.434 |
G-Conakry | 3.430 * | 11.710 * | 0.369 | 0.230 | 84.259 |
Liberia | 4.888 * | 6.249 ** | 1.693 ** | 5.620 * | 81.548 |
Nigeria | 38.329 * | 2.665 * | 11.208 * | 22.694 * | 25.101 |
S-Leone | 9.872 * | 7.645 * | 6.827 * | 2.416 * | 73.237 |
Togo | 0.891 | 0.0333 | 0.098 | 0.114 | 98.862 |
G-Guinea | 30.734 * | 2.405 * | 3.992 | 27.163 * | 35.704 |
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Stratton, C.W.; Tang, Y.-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef]
- Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.G.; Khan, K. Potential for global spread of a novel coronavirus from China. J. Travel Med. 2020, 27, taaa011. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect. 2020, 26, 729–734. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Islam, M.R.; Hoque, M.N.; Rahman, M.S.; Rubayet Ul Alam, A.S.M.; Akther, M.; Puspo, J.A.; Akter, S.; Sultana, M.; Crandall, K.A.; Hossain, M.A. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Sahin, A.R.; Erdogan, A.; Agaoglu, P.M.; Dineri, Y.; Cakirci, A.Y.; Senel, M.E.; Okyay, R.A.; Tasdogan, A.M. 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. Eurasian J. Med. Oncol. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron J. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Qin, J.-J.; Cheng, X.; Shen, L.; Zhao, Y.-C.; Yuan, Y.; Lei, F.; Chen, M.-M.; Yang, H.; Bai, L.; et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020, 32, 176–187.e4. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Rahmandad, H.; Gupta, M.; DiGennaro, C.; Ghaffarzadegan, N.; Jalali, M.S. Weather Conditions and COVID-19 Transmission: Estimates and Projections. medRxiv 2020. [Google Scholar] [CrossRef]
- Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.-Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 734690. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef]
- Wang, J.; Tang, K.; Feng, K.; Lin, X.; Lv, W.; Chen, K.; Wang, F. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electron. J. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D. Aerodynamic characteristics and RNA concentration of SARS-CoV-2 aerosol in Wuhan hospitals during COVID-19 outbreak. bioRxiv 2020, 982637. [Google Scholar] [CrossRef]
- Shaman, J.; Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 2009, 106, 3243–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diouf, I.; Rodríguez-Fonseca, B.; Caminade, C.; Thiaw, W.M.; Deme, A.; Morse, A.P.; Ndione, J.-A.; Gaye, A.T.; Diaw, A.; Ndiaye, M.K.N. Climate Variability and Malaria over West Africa. Am. J. Trop. Med. Hyg. 2020, 102, 1037–1047. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Wagner, C.E.; Yang, W.; Pitzer, V.E.; Viboud, C.; Vecchi, G.A.; Metcalf, C.J.E.; Grenfell, B.T. Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat. Commun. 2019, 10, 5512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitzer, V.E.; Viboud, C.; Alonso, W.; Wilcox, T.; Metcalf, C.J.; Steiner, C.A.; Haynes, A.K.; Grenfell, B.T. Environmental Drivers of the Spatiotemporal Dynamics of Respiratory Syncytial Virus in the United States. PLoS Pathog. 2015, 11, e1004591. [Google Scholar] [CrossRef] [PubMed]
- Briz-Redón, Á.; Serrano-Aroca, Á. The effect of climate on the spread of the COVID-19 pandemic: A review of findings, and statistical and modelling techniques. Prog. Phys. Geogr. Earth Environ. 2020, 44, 591–604. [Google Scholar] [CrossRef]
- da Silva Pedrosa, M.; Sipert, C.R.; Nogueira, F.N. Altered taste in patients with COVID-19: The potential role of salivary glands. Oral Dis. 2021, 27, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Majumder, M.; Liu, D.; Poirier, C.; Mandl, K.; Lipsitch, M.; Santillana, M. The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv 2020. [Google Scholar] [CrossRef]
- Oliveiros, B.; Caramelo, L.; Ferreira, N.; Caramelo, F. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Meo, S.A.; Al-Khlaiwi, T.; Usmani, A.M.; Meo, A.S.; Klonoff, D.C.; Hoang, T.D. Biological and epidemiological trends in the prevalence and mortality due to outbreaks of novel coronavirus COVID-19. J. King Saud Univ. Sci. 2020, 32, 2495–2499. [Google Scholar] [CrossRef] [PubMed]
- Iddrisu, W.A.; Appiahene, P.; Kessie, J.A. Effects of weather and policy intervention on COVID-19 infection in Ghana. arXiv 2020, arXiv:2005.00106. [Google Scholar]
- Taiwo, I.; Fashola, A. COVID-19 Spread and Average Temperature Distribution in Nigeria. SSRN Electron. J. 2020, in press. [Google Scholar] [CrossRef]
- Kong, J.D.; Tekwa, E.W.; Gignoux-Wolfsohn, S.A. Social, economic, and environmental factors influencing the basic reproduction number of COVID-19 across countries. PLoS ONE 2021, 16, e0252373. [Google Scholar] [CrossRef] [PubMed]
- Metelmann, S.; Pattni, K.; Brierley, L.; Cavalerie, L.; Caminade, C.; Blagrove, M.S.; Turner, J.; Sharkey, K.J.; Baylis, M. Impact of climatic, demographic and disease control factors on the transmission dynamics of COVID-19 in large cities worldwide. One Health 2021, 12, 100221. [Google Scholar] [CrossRef]
- WHO. Opening Statement, COVID-19 Press Conference, 24 September 2020. Regional Office for Africa. Available online: https://www.afro.who.int/regional-director/speeches-messages/opening-statement-covid-19-press-conference-24-september-2020 (accessed on 30 November 2020).
- Bioclimatology and Biogeography of Africa PDF—Haumarsembhelzrumbper4. 2021. Available online: https://sites.google.com/a/gv.books-now.com/en120/9783642098932-12tuaceGEhiexi13 (accessed on 30 November 2020).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Nachega, J.; Seydi, M.; Zumla, A. The Late Arrival of Coronavirus Disease 2019 (COVID-19) in Africa: Mitigating Pan-continental Spread. Clin. Infect. Dis. 2020, 71, 875–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njenga, M.K.; Dawa, J.; Nanyingi, M.; Gachohi, J.; Ngere, I.; Letko, M.; Otieno, C.F.; Gunn, B.M.; Osoro, E. Why is There Low Morbidity and Mortality of COVID-19 in Africa? Am. J. Trop. Med. Hyg. 2020, 103, 564–569. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Rubolini, D. Climate affects global patterns of COVID-19 early outbreak dynamics. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ou-Yang, C.-F.; Lin, N.-H.; Lin, C.-C.; Wang, S.-H.; Sheu, G.-R.; Lee, C.-T.; Schnell, R.; Lang, P.M.; Kawasato, T.; Wang, J.-L. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmos. Environ. 2014, 89, 613–622. [Google Scholar] [CrossRef]
- Pani, S.K.; Lin, N.-H.; RavindraBabu, S. Association of COVID-19 pandemic with meteorological parameters over Singapore. Sci. Total Environ. 2020, 740, 140112. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lolli, S.; Chen, Y.-C.; Wang, S.H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 pandemic transmission in Italy. Sci. Rep. 2020, 10, 16213. [Google Scholar] [CrossRef]
- Hayward, D.F.; Oguntoyinbo, J. Climatology of West Africa; Routledge: New York, NY, USA, 2021; Available online: https://www.routledge.com/Climatology-of-West-Africa/Hayward-Oguntoyinbo/p/book/9780367362508 (accessed on 30 November 2020).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Atlas of climatic diagrams for the isoclimatic mediterranean zones (2004). Ecol. Mediterr. 2005, 31, 107–110. [Google Scholar]
- Dorcas Mobolade, T.; Pourvahidi, P. Bioclimatic Approach for Climate Classification of Nigeria. Sustainability 2020, 12, 4192. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Sy, S.; Madonna, F.; Rosoldi, M.; Tramutola, E.; Gagliardi, S.; Proto, M.; Pappalardo, G. Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series. Int. J. Climatol. 2021, 41, E1992–E2014. [Google Scholar] [CrossRef]
- Sy, S.; Quesada, B. Anthropogenic land cover change impact on climate extremes during the 21st century. Environ. Res. Lett. 2020, 15, 034002. [Google Scholar] [CrossRef]
- Auler, A.C.; Cássaro, F.A.M.; da Silva, V.O.; Pires, L.F. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Sci. Total Environ. 2020, 729, 139090. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Pedrosa, R.H.L. The dynamics of COVID-19: Weather, demographics and infection timeline. Infectious Diseases (except HIV/AIDS). medRxiv 2020. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Luk, H.K.H.; Wong, A.C.P.; Li, K.S.M.; Zhu, L.; He, Z.; Fung, J.; Chan, T.T.Y.; Fung, K.S.C.; Woo, P.C.Y. Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, S.K.P.; Woo, P.C.Y.; Li, K.S.M.; Huang, Y.; Tsoi, H.-W.; Wong, B.H.L.; Wong, S.S.Y.; Leung, S.Y.; Chan, K.-H.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamerius, J.D.; Shaman, J.; Alonso, W.; Bloom-Feshbach, K.; Uejio, C.K.; Comrie, A.; Viboud, C. Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates. PLoS Pathog. 2013, 9, e1003194. [Google Scholar] [CrossRef]
- Do Weather Conditions Influence the Transmission of the Coronavirus (SARS-CoV-2)? The Centre for Evidence-Based Medicine. 2021. Available online: https://www.cebm.net/covid-19/do-weather-conditions-influence-the-transmission-of-the-coronavirus-sars-cov-2/ (accessed on 30 November 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diouf, I.; Sy, S.; Senghor, H.; Fall, P.; Diouf, D.; Diakhaté, M.; Thiaw, W.M.; Gaye, A.T. Potential Contribution of Climate Conditions on COVID-19 Pandemic Transmission over West and North African Countries. Atmosphere 2022, 13, 34. https://doi.org/10.3390/atmos13010034
Diouf I, Sy S, Senghor H, Fall P, Diouf D, Diakhaté M, Thiaw WM, Gaye AT. Potential Contribution of Climate Conditions on COVID-19 Pandemic Transmission over West and North African Countries. Atmosphere. 2022; 13(1):34. https://doi.org/10.3390/atmos13010034
Chicago/Turabian StyleDiouf, Ibrahima, Souleymane Sy, Habib Senghor, Papa Fall, Diarra Diouf, Moussa Diakhaté, Wassila M. Thiaw, and Amadou T. Gaye. 2022. "Potential Contribution of Climate Conditions on COVID-19 Pandemic Transmission over West and North African Countries" Atmosphere 13, no. 1: 34. https://doi.org/10.3390/atmos13010034
APA StyleDiouf, I., Sy, S., Senghor, H., Fall, P., Diouf, D., Diakhaté, M., Thiaw, W. M., & Gaye, A. T. (2022). Potential Contribution of Climate Conditions on COVID-19 Pandemic Transmission over West and North African Countries. Atmosphere, 13(1), 34. https://doi.org/10.3390/atmos13010034