Trend Analysis and Spatial Distribution of Meteorological Disaster Losses in China, 2004–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Disaster Type and Data Collections
2.2. Statistical Analysis
3. Results
3.1. Time Trends of Meteorological Disasters in China, 2004–2015
3.1.1. Mortality Caused by Meteorological Disasters, 2004–2015
3.1.2. Time Trend of Direct Economic Losses Caused by Meteorological Disasters, 2004–2015
3.2. Spatial Pattern of Mortality Caused by Meteorological Disasters at Provincial Level, 2004–2015
3.2.1. Spatial Distribution of Mean Mortality Caused by Meteorological Disasters at Provincial Level, 2004–2015
3.2.2. Time Trend of Mortality Caused by Meteorological Disasters at Provincial Level, 2004–2015
3.3. Spatial Pattern of Direct Economic Losses Caused by Meteorological Disasters at Provincial Level, 2004–2015
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Liu, T.; Yan, T.C. Main meteorological disasters in China and their economic losses. J. Nat. Disasters 2011, 20, 90–95. [Google Scholar]
- WMO. Reducing and Managing Risks of Disasters in a Changing Climate; WMO Bulletin 62 (Special Issue); WMO: Geneva, Switzerland, 2013; pp. 23–31. [Google Scholar]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Cummins, J.D.; Mahul, O. Catastrophe Risk Financing in Developing Countries: Principles for Public Intervention; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Alcántara-Ayala, I. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 2002, 47, 107–124. [Google Scholar] [CrossRef]
- Tall, A.; Patt, A.G.; Fritz, S. Reducing vulnerability to hydro-meteorological extremes in Africa. A qualitative assessment of national climate disaster management policies: Accounting for heterogeneity. Weather Clim. Extrem. 2013, 1, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, X.; Ran, Q.; Tian, Y. Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China. J. Hydrol. 2013, 483, 51–60. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Wang, P.; Zhang, S.; Tao, F.; Liu, X. Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990. Nat. Hazards 2014, 71, 2087–2100. [Google Scholar] [CrossRef]
- Wu, J.D.; Fu, Y.; Zhang, J.; Li, N. Meteorological Disaster Trend Analysis in China: 1949–2013. J. Nat. Resour. 2014, 29, 1520–1530. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Q.; Ge, J. Influence of Floods on Schistosomiasis Transmission. Chin. J. Schistosomiasis Control 2002, 14, 315–317. [Google Scholar]
- Xu, J.; Li, J. Characteristics of Tyohoon Disasters in China and Risk Prevention Strategies. Meteorol. Disaster Redution Res. 2012, 35, 59–64. [Google Scholar]
- Qin, D. Climate change sciences into the 21st century: Facts, impact and strategies addressing climate change. Sci. Technol. Rev. 2004, 7, 4–7. [Google Scholar]
- China Meleorological Administration. China Meteorological Disasters Yearbook, 2005–2013; China Meteorological Press: Beijing, China, 2005–2016.
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2016.
- Jin, P.; Chen, F. Medical Statistics Methods; Fudan University Press: Shanghai, China, 2009. [Google Scholar]
- Hankey, B.F.; Ries, L.; Kosary, C.; Feuer, E.; Merrill, R.; Clegg, L.; Edwards, B. Partitioning linear trends in age-adjusted rates. Cancer Causes Control 2000, 11, 31–35. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, W.; Gao, L.; Liu, Z.; Wang-Hong, X.U.; Liu, E.J. Methods for time trend analysis of cancer incidence rates. Chin. J. Epidemiol. 2004, 25, 173–177. [Google Scholar]
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate Change 2013: The Physical Science Basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). In Proceedings of the EGU General Assembly Conference Abstracts 2014, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Hegerl, G.C.; Zwiers, F.W.; Stott, P.A.; Kharin, V.V. Detectability of Anthropogenic Changes in Annual Temperature and Precipitation. Extrem. J. Clim. 2010, 17, 3683–3700. [Google Scholar] [CrossRef] [Green Version]
- Qin, D. China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters; Science Press: Beijing, China, 2015. [Google Scholar]
- Quan, Z.; Norio, O.; Hirokazu, T. Integrated natural disaster risk management:comprehensive and integrated model and Chinese strategy choice. J. Nat. Disasters 2006, 15, 29–37. [Google Scholar]
- Qu, X.; Sun, J.; Zhang, J. Chinese characteristics of meteorological disasters and event analysis. In Proceedings of the 2010 National Symposium on Severe Weather Prediction Technology, Beijing, China; 2010; pp. 1–6. [Google Scholar]
- The Flood Control and Drought Relief Headquarters Office. National Flood Disaster in 2010. China Flood Drought Manag. 2011, 21, 1–3. [Google Scholar]
- Xie, N.; Xin, J.; Liu, S. China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model. Nat. Hazards 2013, 71, 1067–1089. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, P.; Qin, C. Spatial and temporal changes of meteorological disasters in China during 1950–2013. Nat. Hazards 2014, 75, 2607–2623. [Google Scholar] [CrossRef]
- Douben, K.-J. Characteristics of river floods and flooding: A global overview, 1985–2003. Irrig. Drain. 2006, 55, S9–S21. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, B.; Zheng, F.; Zhang, P.; Qin, C. Characteristics of meteorological disasters in China during 2012. J. Nat. Disasters 2014, 23, 24–31. [Google Scholar]
- Hao, L.; Wang, J.; Man, S.; Yang, C. Spatio-temporal change of snow disaster and analysis of vulnerabil ity of animal husbandry in China. J. Nat. Disasters 2002, 4, 42–48. [Google Scholar]
- Ye, D.; Yin, J.; Chen, Z.; Zheng, Y.; Wu, R. Spatiotemporal Change Characteristics of Summer Heatwaves in China in 1961–2010. Adv. Clim. Change Res. 2013, 9, 15–20. [Google Scholar]
- Wang, L.; Liao, Y.; Yang, L.; Li, H.; Ye, B.; Wang, W. Emergency Response to and Preparedness for Extreme Weather Events and Environmental Changes in China. Asia Pac. J. Public Health 2016, 28, 59S–66S. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xiao, Z. Characteristics of tropical cyclones in China and their impacts analysis. Nat. Hazards 2010, 54, 827–837. [Google Scholar] [CrossRef]
- Maybank, J.; Bonsai, B.; Jones, K.; Lawford, R.; O’Brien, E.G.; Ripley, E.A.; Wheaton, E. Drought as a natural disaster. Atmosphere-Ocean 1995, 33, 195–222. [Google Scholar] [CrossRef]
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Z a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 2457 | 2710 | 3485 | 2713 | 2018 | 1596 | 5038 | 1199 | 1637 | 1963 | 1055 | 1352 | −39.82 |
Floods | 1370 | 1260 | 1036 | 1467 | 915 | 704 | 3104 | 591 | 887 | 1411 | 631 | 540 | −18.79 |
Hail | 521 | 616 | 774 | 971 | 549 | 580 | 549 | 323 | 302 | 252 | 194 | 621 | −20.43 |
Typhoon | 196 | 429 | 1522 | 76 | 179 | 43 | 140 | 27 | 74 | 242 | 94 | 48 | −37.47 |
Snow | 26 | 82 | 20 | 34 | 181 | 40 | 51 | 20 | 15 | 20 | 17 | 8 | −9.02 |
Heatwave | 67 | 0 | 7 | 3 | 1 | 8 | 12 | 0 | 3 | 18 | 0 | 1 | −8.76 |
Province Name | APC of All Disaster | p Value a | p Value b | APC of Floods | p Value a | p Value b | APC of Hail | p Value a | p Value b | APC of Typhoon | p Value a | p Value b | APC of Snow | p Value a | p Value b | APC of Heatwave | p Value a | p Value b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 8.93 | 0.63 | 0.20 | −0.51 | 0.98 | 0.00 | 1.29 | 0.91 | 0.10 | |||||||||
Shanxi | −6.07 | 0.49 | 0.20 | −6.04 | 0.50 | 0.20 | −8.93 | 0.41 | 0.04 | −0.76 | 0.89 | 0.00 | ||||||
Liaoning | −13.12 | 0.17 | 0.05 | −11.46 | 0.47 | 0.20 | −17.80 | 0.05 | 0.20 | −6.15 | 0.55 | 0.00 | −9.40 | 0.29 | 0.01 | |||
Jilin | −10.03 | 0.47 | 0.20 | −10.60 | 0.55 | 0.02 | 3.97 | 0.76 | 0.20 | −4.10 | 0.50 | 0.00 | ||||||
Shanghai | −22.55 | 0.01 | 0.20 | −6.21 | 0.11 | 0.79 | −8.47 | 0.39 | 0.09 | −3.88 | 0.72 | 0.00 | −2.32 | 0.68 | 0.00 | 10.25 | 0.33 | 0.00 |
Tianjin | −7.04 | 0.60 | 0.20 | −6.59 | 0.44 | 0.00 | 1.38 | 0.87 | 0.00 | |||||||||
Hebei | −13.37 | 0.12 | 0.01 | −7.59 | 0.43 | 0.20 | −10.91 | 0.01 | 0.20 | 2.50 | 0.50 | 0.00 | −0.85 | 0.89 | 0.00 | 0.60 | 0.89 | 0.00 |
Heilongjiang | −4.45 | 0.78 | 0.08 | −4.00 | 0.80 | 0.03 | −13.95 | 0.11 | 0.20 | 6.26 | 0.33 | 0.00 | ||||||
Jiangsu | −21.19 | 0.00 | 0.03 | −16.13 | 0.04 | 0.20 | −20.13 | 0.00 | 0.17 | −16.22 | 0.01 | 0.20 | −4.01 | 0.55 | 0.00 | −14.13 | 0.13 | 0.05 |
Guizhou | −5.50 | 0.15 | 0.20 | −4.59 | 0.17 | 0.20 | −24.02 | 0.00 | 0.20 | −3.47 | 0.76 | 0.00 | ||||||
Hunan | −10.82 | 0.09 | 0.03 | −7.96 | 0.09 | 0.20 | −6.67 | 0.22 | 0.20 | −30.55 | 0.08 | 0.20 | −13.70 | 0.14 | 0.05 | |||
Ningxia | 4.41 | 0.68 | 0.06 | −2.73 | 0.81 | 0.20 | 3.96 | 0.50 | 0.08 | −1.64 | 0.68 | 0.00 | ||||||
Hainan | 7.35 | 0.54 | 0.54 | 3.91 | 0.45 | 0.00 | −11.94 | 0.15 | 0.20 | 28.17 | 0.11 | 0.20 | ||||||
Shanxi | 7.78 | 0.32 | 0.20 | 0.34 | 0.95 | 0.05 | −9.47 | 0.29 | 0.20 | −0.97 | 0.89 | 0.00 | −2.40 | 0.33 | 0.00 | |||
Guangdong | −1.99 | 0.82 | 0.05 | −10.24 | 0.20 | 0.20 | 6.49 | 0.38 | 0.09 | −5.00 | 0.84 | 0.20 | −18.84 | 0.22 | 0.03 | |||
Guangxi | −6.32 | 0.14 | 0.20 | −5.80 | 0.30 | 0.20 | 1.27 | 0.89 | 0.16 | 23.54 | 0.29 | 0.20 | −1.48 | 0.68 | 0.00 | |||
Gansu | −8.75 | 0.55 | 0.20 | −17.10 | 0.29 | 0.20 | −19.58 | 0.01 | 0.20 | 0.66 | 0.95 | 0.00 | ||||||
Neimenggu | −0.93 | 0.87 | 0.03 | −1.94 | 0.76 | 0.20 | −2.22 | 0.57 | 0.20 | −4.85 | 0.62 | 0.00 | ||||||
Qinghai | −1.82 | 0.74 | 0.20 | 5.30 | 0.44 | 0.20 | −11.25 | 0.04 | 0.20 | −14.84 | 0.06 | 0.17 | ||||||
Jiangxi | −8.08 | 0.08 | 0.07 | −2.34 | 0.67 | 0.20 | −11.45 | 0.05 | 0.20 | 7.06 | 0.78 | 0.11 | −9.43 | 0.19 | 0.01 | |||
Anhui | −8.55 | 0.20 | 0.20 | −0.26 | 0.98 | 0.17 | −14.87 | 0.00 | 0.20 | −18.64 | 0.12 | 0.20 | −3.15 | 0.68 | 0.00 | |||
Zhejiang | −11.95 | 0.23 | 0.20 | 11.69 | 0.28 | 0.20 | −20.48 | 0.00 | 0.20 | −33.60 | 0.03 | 0.20 | −8.72 | 0.41 | 0.01 | |||
Henan | −9.20 | 0.21 | 0.20 | −13.71 | 0.27 | 0.20 | −5.30 | 0.47 | 0.20 | −2.35 | 0.21 | 0.01 | −0.88 | 0.89 | 0.00 | 2.16 | 0.53 | 0.00 |
Shandong | −9.38 | 0.25 | 0.20 | −17.63 | 0.06 | 0.20 | −21.11 | 0.01 | 0.20 | 2.10 | 0.68 | 0.00 | 0.93 | 0.84 | 0.00 | |||
Xizang | −0.20 | 0.97 | 0.20 | 0.13 | 0.99 | 0.20 | −6.36 | 0.08 | 0.20 | 4.42 | 0.52 | 0.20 | ||||||
Hubei | 1.17 | 0.86 | 0.02 | −9.73 | 0.06 | 0.13 | 2.71 | 0.79 | 0.20 | −12.45 | 0.30 | 0.00 | −8.71 | 0.28 | 0.00 | −0.30 | 0.97 | 0.00 |
Yunnan | −7.97 | 0.05 | 0.20 | −8.60 | 0.08 | 0.20 | −19.78 | 0.00 | 0.20 | 31.03 | 0.27 | 0.00 | −22.29 | 0.05 | 0.20 | |||
Xinjiang | −4.96 | 0.37 | 0.20 | −8.76 | 0.08 | 0.20 | 5.12 | 0.50 | 0.20 | −26.52 | 0.03 | 0.15 | −4.69 | 0.30 | 0.01 | |||
Chongqing | −5.29 | 0.43 | 0.20 | −6.04 | 0.45 | 0.20 | −8.06 | 0.38 | 0.20 | −2.74 | 0.68 | 0.00 | ||||||
Sichuan | −6.08 | 0.33 | 0.20 | −8.56 | 0.08 | 0.20 | −18.52 | 0.01 | 0.16 | 1.61 | 0.81 | 0.00 | ||||||
Fujian | −11.24 | 0.27 | 0.20 | −3.75 | 0.79 | 0.20 | −13.83 | 0.25 | 0.01 | −26.17 | 0.09 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Q.; Jiang, B.; Ma, W.; Marley, G. Trend Analysis and Spatial Distribution of Meteorological Disaster Losses in China, 2004–2015. Atmosphere 2022, 13, 208. https://doi.org/10.3390/atmos13020208
Qi Q, Jiang B, Ma W, Marley G. Trend Analysis and Spatial Distribution of Meteorological Disaster Losses in China, 2004–2015. Atmosphere. 2022; 13(2):208. https://doi.org/10.3390/atmos13020208
Chicago/Turabian StyleQi, Qian, Baofa Jiang, Wei Ma, and Gifty Marley. 2022. "Trend Analysis and Spatial Distribution of Meteorological Disaster Losses in China, 2004–2015" Atmosphere 13, no. 2: 208. https://doi.org/10.3390/atmos13020208
APA StyleQi, Q., Jiang, B., Ma, W., & Marley, G. (2022). Trend Analysis and Spatial Distribution of Meteorological Disaster Losses in China, 2004–2015. Atmosphere, 13(2), 208. https://doi.org/10.3390/atmos13020208