Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Mycological Assessment of Air
2.3. Bacteriological Assessment of Air
2.4. Evaluation of Physico–Chemical Air Contamination
2.5. Statistical Analysis
3. Results
3.1. Pilot Study
3.2. Follow-Up Studies
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evangelopoulos, D.; Perez-Velasco, R.; Walton, H.; Gumy, S.; Williams, M.; Kelly, F.K.; Kűnzli, N. The role of burden of disease assessment in tracking progress towards achieving WHO global air quality guidelines. Int. J. Public Health 2020, 65, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Brook, R.D. The indoor-outdoor air-pollution continuum and the burden of cardiovascular disease: An opportunity for improving global health. Glob. Heart 2012, 7, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babatola, S.S. Global burden of diseases attributable to air pollution. J. Public Health Afr. 2018, 9, 162–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, E.W.; Turnock, S.T.; Rigby, R.; Reddington, C.L.; Yoshioka, M.; Johnson, J.S.; Regayre, L.A.; Pringle, K.J.; Mann, G.W.; Spracklen, D.V. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 2017, 12, 104017. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Miller, J.; Henze, D.K.; Minjares, R.; Achakulwisut, P. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett. 2019, 14, 094012. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2020 Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Dziubanek, G.; Spychała, A.; Marchwińska-Wyrwał, E.; Rusin, M.; Hajok, I.; Ćwieląg-Drabek, M.; Piekut, A. Long-term exposure to urban air pollution and the relationship with life expectancy in cohort of 3.5 million people in Silesia. Sci. Total Environ. 2017, 580, 1–8. [Google Scholar] [CrossRef]
- Lee, K.K.; Bing, R.; Kiang, J.; Bashir, S.; Spath, N.; Stelzle, D.; Mortimer, K.; Bularga, A.; Doudesis, D.; Joshi, S.S.; et al. Adverse health effects associated with household air pollution: A systematic review, meta-analysis, and burden estimation study. Lancet Glob. Health 2020, 8, e1427–e1434. [Google Scholar] [CrossRef]
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half of the world’s population are exposed to increasing air pollution. Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Prussin, A.J., II; Garcia, E.B.; Marr, L.C. Total virus and bacteria concentrations in indor and outdoor air. Environ. Sci. Technol. Lett. 2015, 2, 84–88. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Pastuszka, J.S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 2018, 34, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Jiayu, C.; Qiaoqiao, R.; Feilong, C.; Chen, L.; Jiguo, W.; Zhendong, W.; Lingyun, C.; Liu, R.; Guoxia, Z. Microbiology community structure in bioaerosols and the respiratory diseases. J. Environ. Sci. Public Health 2019, 3, 347–357. [Google Scholar] [CrossRef]
- Raghav, N.; Mamta Shrivastava, J.N.; Satsangi, G.P.; Kumar, R. Enumeration and characterization of airborne microbial communities in an outdoor environment of the city of Taj, India. Urban Clim. 2020, 32, 100590. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.J.; Frączek, K.; Grzyb, J. The problems of microbiological air contamination monitoring. Water-Environ.-Rural Areas 2015, 1, 17–27. [Google Scholar]
- Pavan, B.; Manjunath, K. Qualitative analysis of indoor and outdoor airborne fungi in cowshed. Hindawi J. Microbiol. 2014, 985921. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S. Concentration and size distribution of culturable bacteria in ambient air during spring and winter in Gliwice: A typical urban area. Atmosphere 2017, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Tefera, G. Microbial function on climate change—A review. Open J. Environ. Biol. 2018, 3, 001–007. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Grisoli, P.; Albertoni, M.; Rodolfi, M. Application of airborne microorganism indexes in offices, gyms, and libraries. Appl. Sci. 2019, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Mucci, N.; Gianfranceschi, G.; Cianfanelli, C.; Santucci, S.; Spica, V.R.; Valeriani, F. Can microbiota be a novel marker for public health? A sampling model and preliminary data from different environments. Aerobiologia 2020, 36, 71–75. [Google Scholar] [CrossRef]
- Rostami, N.; Alidadi, H.; Zarrinfar, H.; Salehi, P. Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center. Ital. J. Med. 2017, 11, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Górny, R.L.; Harkawy, A.S.; Ławniczek-Wałczyk, A.; Karbowska-Berent, J.; Wlazło, A.; Niesler, A.; Gołofit-Szymczak, M.; Cyprowski, M. Exposure to culturable and total microbiota in cultural heritage conservation laboratories. Int. J. Occup. Med. Environ. Health 2016, 29, 255–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, A.H.; Gibbs, S.G.; Tarwater, P.M.; Green, C.F. Coarse and fine culturable fungal air concentrations in urban and rural homes in Egypt. Int. J. Environ. Res. Public Health 2013, 10, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhang, J.; Guo, W.; Lou, X. Assemblages of Culturable Airborne Fungi in a Typical Urban, Tourism-driven Center of Southeast China. Aerosol. Air Qual. Res. 2019, 19, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gil, T.; Acuna, J.J.; Fujiyoshi, S.; Tanaka, D.; Noda, J.; Maruyama, F.; Jorquera, M.A. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ. Int. 2020, 145, 106156. [Google Scholar] [CrossRef] [PubMed]
- Chanchaem, W.; Awakairt, S. Detection of Pathogenic Bacteria in the Air by Culture Techniques in Combination with Multiplex Polymerase Chain Reaction. Curr. Appl. Sci. Technol. 2020, 20, 354–362. [Google Scholar]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.G.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
- Andualem, Z.; Ayenew, Y.; Ababu, T.; Betelhem Hailu, B. Assessment of Airborne Culturable Fungal Load in an Indoor Environment of Dormitory Rooms: The Case of University of Gondar Student’s Dormitory Rooms, Northwest Ethiopia. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- PN-89/Z-04008/08:1989; Ochrona Czystości Powietrza. Pobieranie Próbek. Pobieranie Próbek Powietrza Atmosferycznego (Imisja) Do Badań Mikrobiologicznych Metodą Aspiracyjną i Sedymentacyjną. Air Purity Protection. Sampling. Atmospheric Air Sampling (Immission) for Microbiological Tests Using the Aspiration and Sedimentation Method. Sektor Zdrowia, Środowiska i Medycyny: Warsaw, Poland, 1989. (In Polish)
- Gerlach, D. Basics of Botanical Microtechnique; PWRiL: Warszawa, Poland, 1972. [Google Scholar]
- Krzyściak, P.; Skóra, M.; Macura, A.B. Atlas Grzybów Chorobotwórczych; MedPharm Polska: Wrocław, Poland, 2011. (In Polish) [Google Scholar]
- de Hoog, G.S.; Guarro, J.; Gené, J.; Figueras Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi Online; Wiley: Hoboken, NJ, USA, 2019; Available online: http://www.clinicalfungi.org/ (accessed on 20 September 2021).
- Watanabe, T. Pictorial Atlas of Soil and Seed Fungi. In Morphologies of Cultured Fungi and Key to Species; CRC Press LLC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Raper, K.B.; Fennell, D.I. The Genus Aspergillus; Krieger: New York, NY, USA, 1973. [Google Scholar]
- Pitt, J.I. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces; Academic Press: London, UK, 1979. [Google Scholar]
- Fassatiova, O. Microscopic Fungi in Technical Microbiology; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 1983. [Google Scholar]
- St-Germain, G.; Summerbell, R. Identifying Filamentous Fungi, 2nd ed.; Star Publishing Company: Belmont, MA, USA, 2011. [Google Scholar]
- Index Fungorum. Available online: http://www.indexfungorum.org/names/names.asp (accessed on 4 December 2021).
- PN-89/Z-04111/01:1989; Ochrona Czystości Powietrza. Badania Mikrobiologiczne. Postanowienia Ogólne i Zakres Normy. Air Purity Protection. Microbiological Testing. General Provisions and the Scope of the Standard. Sektor Zdrowia, Środowiska i Medycyny: Warsaw, Poland, 1989. (In Polish)
- PN-89/Z-04111/02:1989; Ochrona Czystości Powietrza. Badania Mikrobiologiczne. Oznaczanie Liczby Bakterii w Powietrzu Atmosferycznym (Imisja) Przy Pobieraniu Próbek Metodą Aspiracyjną i Sedymentacyjną. Air Purity Protection. Microbiological Testing. Determination of the Number of Bacteria in the Atmospheric Air (Immission) during Sampling with the Aspiration and Sedimentation Method. Sektor Zdrowia, Środowiska i Medycyny: Warsaw, Poland, 1989. (In Polish)
- PN-89/Z-04111/03:1989; Ochrona Czystości Powietrza. Badania Mikrobiologiczne. Oznaczanie Liczby Grzybów Mikroskopowych w Powietrzu Atmosferycznym (Imisja) Przy Pobieraniu Próbek Metodą Aspiracyjną i Sedymentacyjną. Air Purity Protection. Microbiological Testing. Determination of the Number of Microscopic Fungi in the Atmospheric air (Immission) When Sampling with the Aspiration and Sedimentation Method. Sektor Zdrowia, Środowiska i Medycyny: Warsaw, Poland, 1989. (In Polish)
- Basińska, M.; Michałkiewicz, M.; Górzeński, R. Jakość powietrza—wymagania i klasyfikacje dotyczące zanieczyszczeń chemicznych i mikrobiologicznych. Rynek Instal. 2016, 6, 74–78. (In Polish) [Google Scholar]
- Weather Underground. Available online: https://www.wunderground.com/about/data (accessed on 15 December 2018).
- Voivodeship Inspectorate for Environmental Protection in Lodz Database. Available online: https://www.wios.lodz.pl/Lodz-Gdanska_16,211,11 (accessed on 11 November 2019).
- Kwiatkowska, J. Mycological air pollution in the rocery and forest part of the Rogów Arboretum of the Warsaw University of Life Science. Zesz. Nauk. Inst. Ogrod. 2018, 26, 33–41. (In Polish) [Google Scholar]
- Hila, N.; Mali, S.; Miraka, M. Microbiological quality of outdoor air in some settings of Elbasan City. Thalass. Salentina 2018, 40, 67–74. [Google Scholar] [CrossRef]
- Shelton, B.G.; Kirkland, K.H.; Flanders, D.; Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamus-Białek, W.; Filipiak, A.; Wawszczak, M.; Woźniak, A.; Głuszek, S. The microbiological condition of public air in the city during autum and winter. Med. Stud. 2019, 35, 203–209. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Zhou, M.; Hu, J.; Yao, X.; Zhang, H.; Li, Z.; Lou, L.; Xi, C.; Qian, H.; et al. The distribution variance of airborne microorganisms in urban and rural environments. Environ. Pollut. 2019, 247, 898–906. [Google Scholar] [CrossRef]
- Fan, X.-Y.; Gao, J.-F.; Pan, K.-L.; Li, D.-C.; Dai, H.-H.; Li, X. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 2019, 251, 668–680. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Qian, L.; Zhao, Z.; Zhang, C.; Fu, Y.; Li, J.; Zhang, C.; Lu, B.; Qian, J. Biological and chemical compositions of atmospheric particulate matter during hazardous haze days in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 34540–34549. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, W.; Li, J.; Sun, H.; Qian, Y.; Ding, L.; Ma, H.; Li, J. Seasonal variation characteristics of bacteria and fungi in PM2.5 in typical basin cities of Xi’an and Linfen, China. Atmosphere 2021, 12, 809. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Zhang, H.; Yao, X.; Zhou, M.; Wang, J.; He, Z.; Zhang, H.; Lou, L.; Mao, W.; et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 2018, 233, 483–493. [Google Scholar] [CrossRef]
- Gou, H.; Lu, J.; Li, S.; Tong, Y.; Xie, C.; Zheng, X. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environ. Pollut. 2016, 214, 202–210. [Google Scholar] [CrossRef]
- Zhen, Q.; Deng, Y.; Wang, Y.; Wang, X.; Zhang, H.; Sun, X.; Ouyang, Z. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 2017, 601, 703–712. [Google Scholar] [CrossRef]
- Uetake, J.; Tobo, Y.; Uji, Y.; Hill, T.C.J.; DeMott, P.J.; Kreidenweis, S.M.; Misumi, R. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front. Microbiol. 2019, 10, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebielec, S.; Woźniak, M.; Gałązka, A.; Siebielec, G. Microorganisms as indoor and outdoor air biological pollution. Adv. Microbiol. 2020, 59, 115–117. [Google Scholar] [CrossRef]
- Goyer, N.; Lavoie, J.; Lazure, L.; Marchand, G. Bioaerosols in the Workplace: Evaluations, Control and Prevention Guide; IRSST, Occupational Health and Safety Research Institute Robert Sauvre: Montreal, QC, Canada, 2001. [Google Scholar]
No. | Park | Area (ha) | Description |
---|---|---|---|
1 | Poniatowski Park | 41.6 |
|
2 | Zrodliska Park | 17.2 |
|
3 | Sienkiewicz Park | 5.2 |
|
4 | Pilsudski Park | 188.21 |
|
5 | May 3rd Park | 23.5 |
|
6 | Baden-Powell Park | 15.8 |
|
7 | Zaruski Park | 9 |
|
8 | Widzewska Gorka Park | 10 |
|
Parameter | Pilot Study | Follow-Up Study | ||||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | |
Temp. (°C) | −2.00 | 5.00 | 1.17 | 3.55 | −1.50 | 9.00 | 3.05 | 4.00 |
Humidity (%) | 64.00 | 93.00 | 74.67 | 15.95 | 43.00 | 87.00 | 71.38 | 16.67 |
Atm. pressure (Hg) | 989.59 | 1001.58 | 995.47 | 5.99 | 1010.00 | 1029.00 | 1015.54 | 6.59 |
CO (mg/m3) | 0.55 | 0.93 | 0.69 | 0.20 | 0.29 | 0.41 | 0.37 | 0.42 |
NO (µg/m3) | ND | ND | ND | ND | 1.50 | 21.10 | 6.04 | 7.96 |
NO2 (µg/m3) | ND | ND | ND | ND | 10.68 | 29.85 | 17.88 | 7.55 |
NOx (µg/m3) | 60.30 | 156.80 | 93.10 | 55.17 | 13.73 | 51.52 | 25.35 | 14.77 |
SO2 (µg/m3) | ND | ND | ND | ND | 2.10 | 7.45 | 5.07 | 2.14 |
Ozon (O3) (µg/m3) | ND | ND | ND | ND | 44.35 | 88.60 | 67.25 | 17.80 |
Benzene (C6H6) (µg/m3) | 0.71 | 3.36 * | 2.06 * | 1.33 | 0.51 | 1.10 | 0.86 | 0.23 |
PM2.5 (µg/m3) | ND | ND | ND | ND | 8.00 | 32.00 * | 20.85 * | 8.40 |
PM10 (µg/m3) | 22.00 * | 112.00 * | 72.83 * | 46.12 | 16.00 | 38.00 * | 25.37 * | 9.25 |
No. | Type of Station | Station | Pilot Study | |
---|---|---|---|---|
Total Number of Fungi (CFU/m3) | Total Number of Bacteria (CFU/m3) | |||
1 | Park | Zrodliska Park | 0.00 ± 0.00 | 332.01 ± 14.98 |
2 | Pilsudski Park | 52.42 ± 12.01 | 122.77 ± 9.29 | |
3 | May 3rd Park | 17.47 ± 2.08 | 349.33 ± 26.53 | |
Mean ± SD | 23.30 ± 26.69 | 268.04 ± 126.10 |
No. | Species | Park | RG /BSL ^ | ||
---|---|---|---|---|---|
Pilsudski | Zrodliska | May 3rd | |||
1 | Absidia cylindrospora Hagem | + | 2/1 | ||
2 | Apophysomyces elegans P.C. Misra, K.J. Srivast. and Lata | + | 2/2 | ||
3 | Mucor racemosus Fresen. | + | 1/1 | ||
4 | Alternaria alternata (Fr.) Keissl. | +++ | +++ | 1/1 | |
5 | Aspergillus fischeri Wehmer | + | 1/1 | ||
6 | Aspergillus fumigatus Fresen. | ++ | ++ | 2/2 | |
7 | Neocosmospora solani (Mart.) L. Lombard and Crous | + | 2/2 | ||
8 | Penicillium albicans Bainier | + | NC | ||
9 | Penicillium decumbens Thom | + | ++ | 1/1 | |
10 | Scopulariopsis koningii (Oudem.) Vuill. | + | 1/1 | ||
11 | Trichoderma harzianum Rifai | + | 1/1 |
No. | Type of Station | Station | Follow-Up Study | |
---|---|---|---|---|
Total Number of Fungi (CFU/m3) | Total Number of Bacteria (CFU/m3) | |||
1 | Park | Poniatowski Park | 2.62 ± 0.58 | 439.48 ± 10.4 |
2 | Zrodliska Park | 10.48 ± 2.08 | 17.47 ± 4.73 | |
3 | Sienkiewicz Park | 5.24 ± 2.89 | 3.49 ± 4.04 | |
4 | Pilsudski Park | 3.49 ± 1.53 | 105.72 ± 12.51 | |
5 | May 3rd Park | 34.94 ± 9.53 | 31.45 ± 17.04 | |
6 | Baden-Powell Park | 0.00 ± 0.00 | 16.31 ± 3.79 | |
7 | Zaruski Park | 20.97 ± 3.60 | 73.39 ± 20.43 | |
8 | Widzewska Gorka Park | 41.94 ± 10.60 | 10.48 ± 3.51 | |
Mean ± SD | 14.96 ± 15.97 | 87.22 ± 146.64 | ||
9 | Street | Gdanska 16 | 38.44 ± 6.03 | 52.42 ± 6.02 |
10 | Czerniak 1/3 | 20.97 ± 3.79 | 20.97 ± 4.58 | |
Mean ± SD | 29.71 ± 12.35 | 36.70 ± 22.24 |
No. | Species | Park | Street Localizations | RG /BSL ^ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Poniatowski | Zrodliska | Sienkiewicza | Pilsudski | May 3rd | Baden-Powell | Zaruski | Widzewska Gorka | Gdanska 16 | Czerniak 1/3 | |||
1 | Absidia cylindrospora Hagem | + | + | 2/1 | ||||||||
2 | Mucor racemosus Fresen. | + | 1/1 | |||||||||
3 | Alternaria alternata (Fr.) Keissl. | ++ | + | ++ | +++ | + | 1/1 | |||||
4 | Alternaria chlamydospora Mouch. | + | 1/1 | |||||||||
5 | Alternaria longipes (Ellis and Everh.) E.W. Mason | + | + | 1/1 | ||||||||
6 | Aspergillus fischeri Wehmer | + | 1/1 | |||||||||
7 | Aspergillus fumigatus Fresen. | +++ | ++ | + | + | ++ | 2/2 | |||||
8 | Aspergillus niger Tiegh. | + | 1/1 | |||||||||
9 | Cladosporium cladosporioides (Fresen.) G.A. de Vries | + | + | ++ | 1/1 | |||||||
10 | Fusarium oxysporum Schltdl. | + | 1/2 | |||||||||
11 | Neocosmospora solani (Mart.) L. Lombard and Crous | + | + | 2/2 | ||||||||
12 | Paecilomyces variotii Bainier | + | + | + | ++ | 1/2 | ||||||
13 | Penicillium albicans Bainier | ++ | + | + | NC | |||||||
14 | Penicillium chrysogenum Thom | + | + | ++ | + | ++ | 1/1 | |||||
15 | Penicillium citrinum Thom | ++ | 1/1 | |||||||||
16 | Penicillium commune Thom | + | 1/1 | |||||||||
17 | Penicillium decumbens Thom | + | 1/1 | |||||||||
18 | Penicillium waksmanii K.W. Zaleski | + | + | NC | ||||||||
19 | Scopulariopsis koningii (Oudem.) Vuill. | + | 1/1 | |||||||||
20 | Trichoderma harzianum Rifai | + | + | + | + | + | 1/1 |
Parameter | Total Numer of Bacteria | Total Numer of Fungi | ||
---|---|---|---|---|
Spearman Coefficient | p | Spearman Coefficient | p | |
Total numer of bacteria | x | x | 0.1683 | 0.5487 |
Total numer of fungi | 0.1683 | 0.5487 | x | x |
Park area | 0.5433 * | 0.0447 * | 0.1282 | 0.6623 |
Temp. | 0.5468 * | 0.0349 * | −0.0091 | 0.9743 |
Humidity | −0.7410 * | 0.0016 * | 0.2680 | 0.3346 |
Atm. pressure | −0.5586 * | 0.0304 * | 0.0234 | 0.9339 |
CO | −0.7062 * | 0.0033 * | 0.0637 | 0.8214 |
NO | −0.5760 * | 0.0499 * | 0.0090 | 0.9778 |
NO2 | −0.8385 * | 0.0003 * | −0.1441 | 0.6387 |
NOx | −0.8126 * | 0.0002 * | −0.0365 | 0.8972 |
SO2 | 0.2333 | 0.4027 | −0.3859 | 0.1554 |
Ozon (O3) | 0.5252 * | 0.0444 * | 0.0273 | 0.9229 |
Benzene (C6H6) | −0.4209 | 0.1182 | 0.2644 | 0.3410 |
PM2.5 | −0.0505 | 0.8582 | 0.1115 | 0.6923 |
PM10 | 0.0883 | 0.7544 | −0.2603 | 0.3488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góralska, K.; Lis, S.; Gawor, W.; Karuga, F.; Romaszko, K.; Brzeziańska-Lasota, E. Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter. Atmosphere 2022, 13, 207. https://doi.org/10.3390/atmos13020207
Góralska K, Lis S, Gawor W, Karuga F, Romaszko K, Brzeziańska-Lasota E. Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter. Atmosphere. 2022; 13(2):207. https://doi.org/10.3390/atmos13020207
Chicago/Turabian StyleGóralska, Katarzyna, Szymon Lis, Weronika Gawor, Filip Karuga, Krystian Romaszko, and Ewa Brzeziańska-Lasota. 2022. "Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter" Atmosphere 13, no. 2: 207. https://doi.org/10.3390/atmos13020207
APA StyleGóralska, K., Lis, S., Gawor, W., Karuga, F., Romaszko, K., & Brzeziańska-Lasota, E. (2022). Culturable Filamentous Fungi in the Air of Recreational Areas and Their Relationship with Bacteria and Air Pollutants during Winter. Atmosphere, 13(2), 207. https://doi.org/10.3390/atmos13020207