Objective Calibration of Numerical Weather Prediction Model: Application on Fine Resolution COSMO Model over Switzerland
Abstract
:1. Introduction
2. Methodology
2.1. Model Setup and Observational Data
2.2. Sensitivity Experiments
2.3. The Performance Score
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Q.; Schaake, J.; Andreássian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; et al. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Di, Z.; Quan, J.; Wang, C.; Gong, W.; Gan, Y.; Fan, S. Automatic model calibration—A new way to improve numerical weather forecasting. Bull. Am. Meteorol. Soc. 2016, 98, 959–970. [Google Scholar] [CrossRef]
- Skamarock, W.C. Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Mon. Wea. Rev. 2004, 132, 3019–3032. [Google Scholar] [CrossRef]
- Bayler, C.; Gail, M.; Aune, R.M.; Raymond, W.H. NWP Cloud Initialization Using GOES Sounder Data and Improved Modeling of Non precipitating Clouds. Mon. Wea. Rev. 2000, 128, 3911–3921. [Google Scholar] [CrossRef]
- Available online: http://cosmo-model.org/content/model/documentation/core/cosmo_physics_5.05.pdf (accessed on 10 October 2021).
- Neelin, J.D.; Bracco, A.; Luo, H.; McWilliams, J.C.; Meyerson, J.E. Considerations for parameter optimization and sensitivity in climate models. Proc. Natl. Acad. Sci. USA 2010, 107, 21349–21354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellprat, O.; Kotlarski, S.; Lüthi, D.; Schär, C. Objective calibration of regional climate models. J. Geophys. Res. 2012, 117, D23115. [Google Scholar] [CrossRef] [Green Version]
- Bellprat, O.; Kotlarski, S.; Lüthi, D.; Schär, C. Exploring perturbed physics ensembles in a regional climate model. J. Clim. 2012, 25, 4582–4599. [Google Scholar] [CrossRef]
- Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J.M.; Kaufmann, P. Objective calibration of numerical weather prediction models. Atmos. Res. 2017, 190, 128–140. [Google Scholar] [CrossRef]
- Voudouri, A.; Khain, P.; Carmona, I.; Avgoustoglou, E.; Bettems, J.M.; Grazzini, F.; Bellprat, O.; Kaufmann, P.; Bucchignani, E. Calibration of COSMO Model, Priority Project CALMO, Final Report; COSMO Technical Report: 2017; DWD: Offenbach, Germany, 2017; Volume 32. Available online: http://cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport32.pdf (accessed on 10 October 2021).
- Khain, P.; Carmona, I.; Voudouri, A.; Avgoustoglou, E.; Bettems, J.-M.; Grazzini, F. The Proof of the Parameters Calibration Method: CALMO Progress Report; COSMO Technical Report: 2015; DWD: Offenbach, Germany, 2015; Volume 25. Available online: http://cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport25.pdf (accessed on 10 October 2021).
- Khain, P.; Carmona, I.; Voudouri, A.; Avgoustoglou, E.; Bettems, J.-M.; Grazzini, F.; Kaufman, P. CALMO Progress Report; COSMO Technical Report: 2017; DWD: Offenbach, Germany, 2017; Volume 31. Available online: http://cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport31.pdf (accessed on 10 October 2021).
- Voudouri, A.; Khain, P.; Carmona, I.; Avgoustoglou, E.; Kaufmann, P.; Grazzini, F.; Bettems, J.M. Optimization of high resolution COSMO model performance over Switzerland and Northern Italy. Atmos. Res. 2018, 213, 70–85. [Google Scholar] [CrossRef]
- Murphy, A.H. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Weat. Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: San Diego, CA, USA, 1995; p. 467. [Google Scholar]
- Damrath, U. Long-term trends of the quality of COSMO-EU forecast expressed as the universal score COSI and others scores for temperature 2 m and wind 10 m—Related to A global score for COSMO models. In Proceedings of the Recommendations from “The Score Meeting of 20th August 2007 in Zurich” 11th COSMO-GM, Offenbach, Germany, 7–11 September 2009. [Google Scholar]
- Lapillonne, X.; Fuhrer, O. Using compiler directives to port large scientific applications to GPUs: An example from atmospheric science. Parallel Process. Lett. 2014, 24, 1450003. [Google Scholar] [CrossRef]
- Doms, G.; Foerstner, J.; Heise, E.; Herzog, H.-J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schultz, J.-P.; et al. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization; DWD: Offenbach, Germany, 2011. Available online: http://www.cosmo-model.org/content/model/documentation/core/cosmo_physics_4.20.pdf (accessed on 10 October 2021).
- Gebhardt, C.; Theis, S.E.; Paulat, M.; Ben, Z. Bouallègue Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res. 2011, 100, 168–177. [Google Scholar] [CrossRef]
- Avgoustoglou, E.; Voudouri, A.; Carmona, I.; Bucchignani, E.; Levi, Y.; Bettems, J.-M. A Methodology towards the Hierarchy of COSMO Parameter Calibration Tests via the Domain Sensitivity over the Mediterranean Area; COSMO Technical Report: 2020; DWD: Offenbach, Germany, 2020; Volume 42. Available online: http://cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport42.pdf (accessed on 10 October 2021).
- Bucchignani, E.; Voudouri, A.; Mercogliano, P. A Sensitivity Analysis with COSMO-LM at 1 km Resolution over South Italy. Atmosphere 2020, 11, 430. [Google Scholar] [CrossRef] [Green Version]
Acronym | Parameter/Property | Value |
---|---|---|
Tkhmin (LTKHM minimum and HTKHM maximum value) | Minimal diffusion coefficient for heat | (0.1, 0.4, 1) |
rlam_heat (LRLAM minimum and HRLAM maximum value) | Factor for laminar resistance for heat | (0.1, 1, 2) |
uc1 (LUC1 minimum and HUC1 maximum value) | Parameter controlling the vertical variation of critical relative humidity for sub-grid cloud formation | (0, 0.8, 1) |
v0snow (LV0SN minimum and HV0SN maximum value) | Factor for vertical velocity of snow | (10, 20, 30) |
rad_fac (LRADFAC minimum and HRADFAC maximum value) | Fraction of cloud water and ice considered by the radiation scheme | (0.3, 0.6, 0.9) |
Parameter | T2 m (°C) | Td (°C) | 10 m Wind Speed (m/s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2013 | 2017 | 2013 | 2017 | 2013 | 2017 | ||||||
Measure/Simulation | DEF | BEST | DEF | BEST | DEF | BEST | DEF | BEST | DEF | BEST | DEF | BEST |
ME | 0.01 | 0.04 | 0.18 | 0.09 | 0.06 | −0.01 | −0.029 | −0.029 | 0.13 | 0.11 | 0.115 | 0.104 |
RMSE | 2.07 | 2.07 | 2.22 | 2.21 | 2.31 | 2.33 | 2.37 | 2.36 | 1.9 | 1.9 | 1.955 | 1.954 |
MINOBS | −30.7 | −29.6 | −73 | −54.8 | 0 | 0 | ||||||
MINMOD | −28.6 | −28.5 | −30.2 | −30.0 | −37.48 | −38.67 | −44.41 | −45.47 | 0.007 | 0.001 | 0.0012 | 0.0013 |
MAXOBS | 40.8 | 42 | 39 | 41.2 | 46 | 40.1 | ||||||
MAXMOD | 42.7 | 42.6 | 44.03 | 43.38 | 25.24 | 25.77 | 24.86 | 25.00 | 29 | 29 | 28.19 | 28.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voudouri, A.; Avgoustoglou, E.; Carmona, I.; Levi, Y.; Bucchignani, E.; Kaufmann, P.; Bettems, J.-M. Objective Calibration of Numerical Weather Prediction Model: Application on Fine Resolution COSMO Model over Switzerland. Atmosphere 2021, 12, 1358. https://doi.org/10.3390/atmos12101358
Voudouri A, Avgoustoglou E, Carmona I, Levi Y, Bucchignani E, Kaufmann P, Bettems J-M. Objective Calibration of Numerical Weather Prediction Model: Application on Fine Resolution COSMO Model over Switzerland. Atmosphere. 2021; 12(10):1358. https://doi.org/10.3390/atmos12101358
Chicago/Turabian StyleVoudouri, Antigoni, Euripides Avgoustoglou, Izthak Carmona, Yoav Levi, Edoardo Bucchignani, Pirmin Kaufmann, and Jean-Marie Bettems. 2021. "Objective Calibration of Numerical Weather Prediction Model: Application on Fine Resolution COSMO Model over Switzerland" Atmosphere 12, no. 10: 1358. https://doi.org/10.3390/atmos12101358
APA StyleVoudouri, A., Avgoustoglou, E., Carmona, I., Levi, Y., Bucchignani, E., Kaufmann, P., & Bettems, J. -M. (2021). Objective Calibration of Numerical Weather Prediction Model: Application on Fine Resolution COSMO Model over Switzerland. Atmosphere, 12(10), 1358. https://doi.org/10.3390/atmos12101358