Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling
Abstract
:1. Introduction
2. Data and Analysis Methods
2.1. Data Processing
2.2. Structural Equation Modeling: Overview
2.3. Factor Analysis
2.4. Path Analysis
3. Results
3.1. Factor Analysis
3.2. Path Analysis
4. Discussion
4.1. Factor Analysis
4.2. Path Analysis
5. Conclusions
- Overall variability in ET at forest sites shows a stronger dependence on relative humidity while ET at tundra sites depends more strongly on air temperature and thermal variables. The results imply that ET at tundra sites is more temperature-limited than moisture-limited.
- The flow chart accompanying the path analysis shows that ET has a stronger direct correlation with solar radiation than with any other measured variable.
- Wind speed has the largest independent contribution to ET variability. The independent contribution of solar radiation is smaller because solar radiation also affects ET through the air temperature, which in turn is correlated with relative humidity and net longwave radiation. The independent contribution of wind speed is especially apparent at forest wetland sites, although the sample size of these sites is small.
- The role of temperature in the overall variability of ET appears to be permafrost-dependent. For both tundra and forest sites, temperature loads higher on the first factor when permafrost is present, a result that is common to both types of vegetation. More generally, the presence of permafrost has a damping effect on independent variable contributions to ET variability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mackay, D.S.; Ewers, B.E.; Cook, B.E.; Davis, K.J. Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resour. Res. 2007, 43, W03442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, N.; Park, H.; Walsh, J.E.; Zhang, K. Evaporation processes and changes over the northern regions. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 101–131. [Google Scholar] [CrossRef]
- Bring, A.; Federova, I.; Dibike, Y.; Hinzman, L.; Mard, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.-K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Hiyama, T.; Yang, D.; Kane, D. Permafrost hydrology: Linkages and feedbacks. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 471–491. [Google Scholar] [CrossRef]
- Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J. Thermal state of permafrost in North America: A contribution to the international polar year. Permafr. Periglac. Process. 2010, 21, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Marsh, P.; Dery, S.; Yang, D. Snow cover—Observations, processes, changes and impacts. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 61–99. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Hinzman, L.D.; Harazono, Y.; Zona, D.; Tweedie, C.E.; Hollister, R.D.; Engstrom, R.; Oechel, W.C. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 2011, 8, 3375–3389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, L.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in North China. Agric. For. Meteorol. 2015, 216, 1–12. [Google Scholar] [CrossRef]
- Trenberth, K.E. Climate System Modeling; Cambridge University Press: Cambridge, UK, 2010; p. 820. ISBN -13: 978-0521128377. [Google Scholar]
- Nazarbakhsh, M.; Ireson, A.M.; Barr, A.G. Controls on evapotranspiration from Jack Pine Forests in the Boreal Plains Ecozone. Hydrol. Process. 2019, 34, 927–940. [Google Scholar] [CrossRef]
- Eugster, W.; Rouse, W.R.; Pielke, R.A., Sr.; McFadden, J.P.; Baldocci, D.D.; Kittell, T.G.F.; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E.; et al. Land-atmosphere energy exchange in Arctic Tundra and Boreal Forest: Available data and feedbacks to climate. Glob. Chang. Biol. 2002, 6, 84–115. [Google Scholar] [CrossRef]
- Sabater, A.M.; Ward, H.C.; Hill, T.C.; Gormall, J.L.; Wade, T.J.; Evans, J.G.; Preto-Blanco, A.; Disney, M.; Phoenix, G.K.; Williams, M.; et al. Transpiration from subarctic deciduous woodlands: Environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 2019, 13, e2190. [Google Scholar] [CrossRef]
- Dolman, A.J.; Maximov, T.C.; Moors, E.J.; Maximov, A.P.; Elbers, J.A.; Koronov, A.V.; Waterloo, M.J.; van der Molen, M.K. Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix cajanderii) on permafrost. Biogeosciences 2004, 1, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, Y.; Takanashi, S.; Tanaka, H.; Ohkubo, S.; Tani, M.; Yana, K.; Katayama, T. Evapotranspiration over a Japanese cypress forest. I: Eddy covariance fluxes and surface conductance characteristics for 3 years. J. Hydrol. 2007, 337, 269–283. [Google Scholar] [CrossRef]
- Ohta, T.; Maximov, T.C.; Dolman, A.J.; Nakai, T.; van der Molen, M.K.; Kononov, A.V.; Maximov, A.P.; Hiyama, T.; Iijima, Y.; Moors, E.J.; et al. Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric. For. Meteorol. 2008, 148, 1941–1953. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, A.T.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arian, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Yan, H.; Shugart, H.H. An air relative-humidity-based evapotranspiration model from eddy covariance data. J. Geophys. Res. 2010, 115, D16106. [Google Scholar] [CrossRef] [Green Version]
- Thunberg, S.M.; Walsh, J.E.; Euskirchen, E.S.; Redilla, K.; Rocha, A.V. Surface moisture budget of tundra and boreal ecosystems in Alaska: Variations and drivers. Polar Sci. 2021, 100685. [Google Scholar] [CrossRef]
- Saito, K.; Walsh, J.E.; Bring, A.; Brown, R.; Shiklomanov, A.; Yang, D. Future trajectory of Arctic system evolution. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 893–914. [Google Scholar] [CrossRef]
- Lafleur, P.M.; Humphreys, E.R.; St. Louis, V.L.; Myklebust, M.C.; Papakryiakou, T.; Poissant, L.; Barker, J.D.; Pilote, M.; Swystun, K.A. Variation in peak growing season net ecosystem production across the Canadian Arctic. Environ. Sci. Technol. 2012, 46, 7971–7977. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper No. 56; United Nations Food and Agriculture Organization (FAO): Rome, Italy, 1998; Volume 56, pp. 26–40. Available online: https://www.scirp.org/reference/referencespapers.aspx?referenceid=1665171 (accessed on 9 October 2021).
- Mosre, J.; Suárez, F. Actual evapotranspiration estimates in arid cold regions using machine learning algorithms with in situ and remote sensing data. Water 2021, 13, 870. [Google Scholar] [CrossRef]
- Bollen, K. Structural Equations with Latent Variables; John Wiley and Sons: New York, NY, USA, 1989; p. 709. ISBN 978-0-471-01171-2. [Google Scholar]
- Gorsuch, R.L. Factor Analysis, 2nd ed.; Routledge Press: London, UK, 2014; p. 464. ISBN 9781138831995. [Google Scholar]
- UCLA. Statistical Consulting Group. Available online: https://stats.idre.ucla.edu/r/seminars/rcfa/#s2 (accessed on 2 October 2021).
- Python3 Factor Analyzer Package. Available online: https://libraries.io/pypi/factor-analyzer (accessed on 2 October 2021).
- Loehlin, J.C. Latent Variable Models: An Introduction to Factor, Path and Structural Analysis, 4th ed.; Lawrence Erlbaum Associates: Mathway, NH, USA, 2003; p. 336. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 18, 1–36. Available online: file:///C:/Users/jewalsh/AppData/Local/Temp/v48i02-1.pdf (accessed on 9 October 2021).
- Kruskal, W.J.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Raz-Yaseef, N.; Young-Robertson, J.; Rahm, T.; Sloan, V.; Newman, B.; Wilson, C.; Wullschleger, S.D.; Torn, M.S. Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra. J. Hydrol. 2017, 533, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Lobos-Roco, F.; Hartogensis, O.; Vila-Guerau de Arellano, J.; de la Fuente, A.; Muñoz, R.; Rutllant, J.; Suárez, F. Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert. Atmosphere 2021, 21, 9125–9150. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Famiglietti, J.S. Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally. J. Geophys. Res. Biogeosci. 2016, 121, 3045–3059. [Google Scholar] [CrossRef]
Variable | Variable Abbreviation | Units |
---|---|---|
Latent heat flux | ET | W/m2 |
Sensible heat flux | SHF | W/m2 |
Incoming shortwave radiation | SW in | W/m2 |
Outgoing shortwave radiation | SW out | W/m2 |
Incoming longwave radiation | LW in | W/m2 |
Outgoing longwave radiation | LW out | W/m2 |
Air temperature | Ta | °C |
Precipitation | P | mm |
Relative humidity | RH | % |
Wind speed | WS | m/s |
Ground heat flux | GHF | W/m2 |
Site ID | Site Name | Country | Latitude (° N) | Longitude (° E) | Vegetation | Permafrost | Data Coverage |
---|---|---|---|---|---|---|---|
CA-Man | Manitoba—Northern old black spruce | Canada | 55.88 | −98.48 | Evergreen needleleaf forest | No | 1994–2008 |
CA-NS1 | UCI 1850 burn site | Canada | 55.88 | −98.48 | Evergreen needleleaf forest | No | 2001–2005 |
CA-NS2 | UCI 1930 burn site | Canada | 55.90 | −98.52 | Evergreen needleleaf forest | No | 2001–2005 |
CA-NS3 | UCI 1964 burn site | Canada | 55.91 | −98.38 | Evergreen needleleaf forest | No | 2001–2005 |
CA-NS4 | UCI 1964 burn site wet | Canada | 55.91 | −98.38 | Evergreen needleleaf forest | No | 2001–2005 |
CA-NS5 | UCI 1981 burn site | Canada | 55.86 | −98.49 | Evergreen needleleaf forest | No | 2001–2005 |
CA-NS6 | UCI 1989 burn site | Canada | 55.92 | −98.96 | Open shrublands | No | 2001–2005 |
CA-NS7 | UCI 1998 burn site | Canada | 56.64 | −99.95 | Open shrublands | No | 2001–2005 |
CA-SCB | Scotty Creek Bog | Canada | 61.31 | −121.30 | Permanent wetlands | Discontinuous | 2014–2017 |
CA-SCC | Scotty Creek Landscape | Canada | 61.31 | −121.30 | Evergreen needleleaf forest | Discontinuous | 2013–2016 |
DK-NuF/GL-NuF | Nuuk Fen (University of Copenhagen) | Greenland | 64.13 | −51.39 | Permanent wetlands | Discontinuous | 2008–2014 |
DK-ZaF/GL-ZaF | Zackenberg Fen | Greenland | 74.48 | −20.55 | Permanent wetlands | Continuous | 2008–2011 |
DK-ZaH/GL-ZaH | Zackenberg Heath | Greenland | 74.47 | −20.55 | Grasslands | Continuous | 2000–2014 |
FI-Hyy | Hyytiala (U Helsinki) | Finland | 61.85 | 24.29 | Evergreen needleleaf forest | No | 1996–2015 |
FI-Var | Varrio (U Helsinki) | Finland | 67.76 | 29.61 | Evergreen needleleaf forest | No | 2016–2018 |
IS-Gun | Gunnarsholt | Iceland | 63.83 | −20.22 | Deciduous broadleaf forest | No | 1996–1998 |
RU-Cok | Chokurdakh (Vrije University Amsterdam) | Russia | 70.83 | 147.49 | Open shrublands | Continuous | 2003–2014 |
RU-Fy2 | Fyodorovskoye 2 (A.N. Severtsov Institute of Ecology and Evolution RAS) | Russia | 56.45 | 32.90 | Evergreen needleleaf forest | No | 2015–2018 |
RU-Fyo | Fyodorovskoye (A.N. Severtsov Institute of Ecology and Evolution RAS) | Russia | 56.46 | 32.92 | Evergreen needleleaf forest | No | 1998–2014 |
RU-Sam | Samoylov (University of Hamburg) | Russia | 72.37 | 126.50 | Grasslands | Continuous | 2002–2014 |
RU-SkP | Yakutsk Spasskaya Pad larch (IBPC) | Russia | 62.26 | 129.17 | Deciduous needleleaf forest | Continuous | 2012–2014 |
RU-Zot | Zotino | Russia | 60.80 | 89.35 | Permanent wetlands | No | 2002–2004 |
SE-Fla | Flakaliden (Lund University) | Sweden | 64.11 | 19.46 | Evergreen needleleaf forest | No | 1997–2002 |
SE-Sk1 | Skyttorp (SUAS Uppsala) | Sweden | 60.13 | 17.92 | Evergreen needleleaf forest | No | 2004–2008 |
SE-St1 | Stordalen Grassland (University of Copenhagen) | Sweden | 68.35 | 19.05 | Permanent wetlands | Discontinuous | 2012–2014 |
SJ-Adv | Adventdalen (NATEKO) | Svalbard | 78.19 | 15.92 | Permanent wetlands | Continuous | 2011–2014 |
US-A10 | Utqiagvik (Barrow) | Alaska, USA | 71.32 | −156.61 | Barren sparse vegetation | Continuous | 2011–2018 |
US-An1 | Anaktuvuk Severe Burn | Alaska, USA | 68.98 | −150.28 | Open shrublands | Continuous | 2008–2010 |
US-An2 | Anaktuvuk Moderate Burn | Alaska, USA | 68.95 | −150.21 | Open shrublands | Continuous | 2008–2010 |
US-An3 | Anaktuvuk Unburned | Alaska, USA | 68.93 | −150.27 | Open shrublands | Continuous | 2008–2010 |
US-Atq | Atqasuk | Alaska, USA | 70.47 | −157.41 | Permanent wetlands | Continuous | 1999–2006 |
US-Bn1 | Bonanza Creek Delta 1920 Burn | Alaska, USA | 63.92 | −145.38 | Evergreen needleleaf forest | Discontinuous | 2002–2004 |
US-Bn2 | Bonanza Creek Delta 1987 Burn | Alaska, USA | 64.92 | −145.38 | Deciduous broadleaf forest | Discontinuous | 2002–2004 |
US-Bn3 | Bonanza Creek Delta 1999 Burn | Alaska, USA | 63.92 | −145.74 | Open shrublands | Discontinuous | 2002–2004 |
US-BZB | Bonanza Creek Thermokarst | Alaska, USA | 64.70 | −148.32 | Permanent wetlands | Discontinuous | 2013–2019 |
US-BZF | Bonanza Creek Fen | Alaska, USA | 64.70 | −148.31 | Permanent wetlands | No | 2013–2019 |
US-BZS | Bonanza Creek Black Spruce | Alaska, USA | 64.70 | −148.32 | Evergreen needleleaf forest | Continuous | 2010–2019 |
US-ICh | Imnavait Ridge | Alaska, USA | 68.61 | −149.30 | Open shrublands | Continuous | 2008–2018 |
US-ICs | Imnavait Fen | Alaska, USA | 68.61 | −149.31 | Permanent wetlands | Continuous | 2008–2018 |
US-ICt | Imnavait Tussock | Alaska, USA | 68.61 | −149.30 | Open shrublands | Continuous | 2008–2018 |
US-Prr | Poker Flat Research Range Black Spruce Forest | Alaska, USA | 65.12 | −147.49 | Evergreen needleleaf forest | Discontinuous | 2010–2016 |
US-Rpf | Poker Flat Research Range deciduous forest | Alaska, USA | 65.12 | −147.43 | Deciduous broadleaf forest | Discontinuous | 2008–2019 |
US-Uaf | University of Alaska, Fairbanks | Alaska, USA | 64.87 | −147.83 | Evergreen needleleaf forest | Discontinuous | 2003–2017 |
YPF | Yakustk Pine (IBPC) | Russia | 62.24 | 129.65 | Evergreen needleleaf forest | Continuous | 2004–2008 |
Cherski (ETH Zurich) | Russia | 68.64 | 161.33 | Permanent wetlands | Continuous | 2002–2005 |
Test Statistic | p-Value | |||
---|---|---|---|---|
Daily | Weekly | Daily | Weekly | |
Tundra Permafrost Continuous | 29.59 | 26.12 | 0 | 0 |
Tundra Permafrost Discontinuous | 12.27 | 10.78 | 0.09 | 0.15 |
Tundra Non-Permafrost | 12.96 | 3.2 | 0.07 | 0.87 |
Forest Permafrost Continuous | 12.36 | 8.87 | 0.09 | 0.26 |
Forest Permafrost Discontinuous | 22.02 | 19.35 | 0 | 0.01 |
Forest Non-Permafrost | 26.65 | 28.14 | 0 | 0 |
Tundra Wetland | 26.98 | 23.24 | 0 | 0 |
Tundra Shrubland | 23.77 | 18.3 | 0 | 0.01 |
Tundra Grassland | 5.93 | 3.2 | 0.55 | 0.87 |
Forest Evergreen Needleleaf | 30.48 | 37.72 | 0 | 0 |
Forest Deciduous Needleleaf | 4 | 3 | 0.78 | 0.89 |
Forest Deciduous Broadleaf | 11.36 | 5.92 | 0.12 | 0.55 |
Forest Wetland | 9.04 | 7.68 | 0.25 | 0.36 |
Tundra | 50.42 | 39.29 | 0 | 0 |
Forest Permafrost | 32.01 | 27.26 | 0 | 0 |
Forest Non-Permafrost | 26.65 | 28.14 | 0 | 0 |
All Sites | 98.21 | 87.2 | 0 | 0 |
Test Statistic | p-Value | |||
---|---|---|---|---|
Daily | Weekly | Daily | Weekly | |
Tundra Permafrost Continuous | 5.99 | 10.48 | 0.05 | 0.01 |
Tundra Permafrost Discontinuous | 5.38 | 3.2 | 0.07 | 0.2 |
Tundra Non-Permafrost | 3 | 0 | 0.22 | 1 |
Forest Permafrost Continuous | 3.2 | 1.8 | 0.2 | 0.41 |
Forest Permafrost Discontinuous | 8.77 | 4.73 | 0.01 | 0.09 |
Forest Non-Permafrost | 0.69 | 2.74 | 0.71 | 0.25 |
Tundra Wetland | 10.85 | 10.5 | 0 | 0.01 |
Tundra Shrubland | 4.11 | 2.54 | 0.13 | 0.28 |
Tundra Grassland | 0 | 0 | 1 | 0 |
Forest Evergreen Needleleaf | 3.07 | 3.47 | 0.22 | 0.18 |
Forest Deciduous Needleleaf | 1 | 0 | 0.61 | 0 |
Forest Deciduous Broadleaf | 4.29 | 0 | 0.12 | 1 |
Forest Wetland | 3.6 | 2.4 | 0.17 | 0.3 |
Tundra | 11.75 | 13.14 | 0 | 0 |
Forest Permafrost | 11.95 | 4.8 | 0 | 0.09 |
Forest Non-Permafrost | 0.69 | 2.74 | 0.71 | 0.25 |
All Sites | 20.73 | 20.29 | 0 | 0 |
Test Statistic | p-Value | |||
---|---|---|---|---|
Daily | Weekly | Daily | Weekly | |
Tundra Permafrost Continuous | 3.46 | 0.66 | 0.06 | 0.42 |
Tundra Permafrost Discontinuous | 1.93 | 1.8 | 0.16 | 0.18 |
Tundra Non-Permafrost | 0 | 0 | 1 | 1 |
Forest Permafrost Continuous | 1.8 | 1.8 | 0.18 | 0.18 |
Forest Permafrost Discontinuous | 1.12 | 0.56 | 0.29 | 0.46 |
Forest Non-Permafrost | 0.35 | 0.22 | 0.55 | 0.64 |
Tundra Wetland | 4.19 | 2.45 | 0.04 | 0.12 |
Tundra Shrubland | 1.36 | 0 | 0.24 | 1 |
Tundra Grassland | 0 | 0 | 1 | 0 |
Forest Evergreen Needleleaf | 1.19 | 0 | 0.28 | 1 |
Forest Deciduous Needleleaf | 0 | 0 | 0 | 0 |
Forest Deciduous Broadleaf | 1.8 | 0 | 0.18 | 1 |
Forest Wetland | 1.5 | 0 | 0.22 | 1 |
Tundra | 4.59 | 0.59 | 0.03 | 0.44 |
Forest Permafrost | 2.31 | 0 | 0.13 | 1 |
Forest Non-Permafrost | 0.35 | 0.22 | 0.55 | 0.64 |
All Sites | 7.77 | 0.26 | 0.01 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thunberg, S.M.; Euskirchen, E.S.; Walsh, J.E.; Redilla, K.M. Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling. Atmosphere 2021, 12, 1359. https://doi.org/10.3390/atmos12101359
Thunberg SM, Euskirchen ES, Walsh JE, Redilla KM. Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling. Atmosphere. 2021; 12(10):1359. https://doi.org/10.3390/atmos12101359
Chicago/Turabian StyleThunberg, Sarah M., Eugénie S. Euskirchen, John E. Walsh, and Kyle M. Redilla. 2021. "Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling" Atmosphere 12, no. 10: 1359. https://doi.org/10.3390/atmos12101359
APA StyleThunberg, S. M., Euskirchen, E. S., Walsh, J. E., & Redilla, K. M. (2021). Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling. Atmosphere, 12(10), 1359. https://doi.org/10.3390/atmos12101359