Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data
Abstract
:1. Introduction
1.1. Hybrid Offshore Wind–Wave Energy
- (i)
- The better utilization of the available marine space, whereas marine spatial planning, is an important prerequisite in this direction. For example [13] studied the joint exploitation of the WW resource for the Italian seas based on a marine spatial planning framework. A relevant assessment was performed for the island of Tenerife, where the optimal positions for collocating WW energy devices were examined taking into consideration the bathymetry and the distance from ports [14]. In [15], a review on the multiple-use of marine space is presented.
- (ii)
- The reduced power variability, especially for locations where wind and wave resources are not strongly correlated. These aspects were recently investigated in a multisite analysis in [16], using field observations of met-ocean conditions. It was found that the reduction in variability depends on the magnitude and lag of resource correlation and the wind–wave capacity mix of the particular location, rendering thus hybrid systems more beneficial in certain locations than others; see also [17,18]. Furthermore, Ref. [19] studied the WW resource for the Black Sea, Ref. [20] for specific locations at the coasts of Ireland, and [21] for the European seas.
- (iii)
- (iv)
- The decrease in the potential environmental impacts compared to the impacts of the stand-alone installations [23].
1.2. Synergy and Complementarity
2. ERA 5 Reanalysis Data and Initial Evaluation
2.1. ERA5 Dataset
2.2. In-Situ Measurements
2.3. Data Reparation
2.4. Data Evaluation
3. Wind and Wave Synergy and Complementarity
4. Results
4.1. Offshore Wind and Wave Power Potential
4.2. Synergy and Complementarity between Offshore Wind and Wave Energy
4.3. An Actual Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef] [Green Version]
- Soukissian, T. Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution. Appl. Energy 2013, 111, 982–1000. [Google Scholar] [CrossRef]
- Johnston, B.; Foley, A.; Doran, W.J.; Littler, T. Levelised cost of energy, A challenge for offshore wind. Renew. Energy 2020, 160, 876–885. [Google Scholar] [CrossRef]
- Rubio-Domingo, G.; Linares, P. The future investment costs of offshore wind: An estimation based on auction results. Renew. Sustain. Energy Rev. 2021, 148, 111324. [Google Scholar] [CrossRef]
- Lavidas, G.; Blok, K. Shifting wave energy perceptions: The case for wave energy converter (WEC) feasibility at milder resources. Renew. Energy 2021, 170, 1143–1155. [Google Scholar] [CrossRef]
- Besio, G.; Mentaschi, L.; Mazzino, A. Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy 2016, 94, 50–63. [Google Scholar] [CrossRef]
- Jin, S.; Greaves, D. Wave energy in the UK: Status review and future perspectives. Renew. Sustain. Energy Rev. 2021, 143, 110932. [Google Scholar] [CrossRef]
- Soukissian, T.; Karathanasi, F. Joint Modelling of Wave Energy Flux and Wave Direction. Processes 2021, 9, 460. [Google Scholar] [CrossRef]
- Mazarakos, T.; Konispoliatis, D.; Katsaounis, G.; Polyzos, S.; Manolas, D.; Voutsinas, S.; Soukissian, T.; Mavrakos, S.A. Numerical and experimental studies of a multi-purpose floating TLP structure for combined wind and wave energy exploitation. Mediterr. Mar. Sci. 2019, 20, 745–763. [Google Scholar] [CrossRef] [Green Version]
- Konispoliatis, D.; Katsaounis, G.; Manolas, D.; Soukissian, T.; Polyzos, S.; Mazarakos, T.; Voutsinas, S.; Mavrakos, S. REFOS: A Renewable Energy Multi-Purpose Floating Offshore System. Energies 2021, 14, 3126. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef] [Green Version]
- McTiernan, K.L.; Sharman, K.T. Review of Hybrid Offshore Wind and Wave Energy Systems. J. Physics Conf. Ser. 2020, 1452, 012016. [Google Scholar] [CrossRef]
- Azzellino, A.; Lanfredi, C.; Riefolo, L.; De Santis, V.; Contestabile, P.; Vicinanza, D. Combined Exploitation of Offshore Wind and Wave Energy in the Italian Seas: A Spatial Planning Approach. Front. Energy Res. 2019, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Veigas, M.; Iglesias, G. Wave and offshore wind potential for the island of Tenerife. Energy Convers. Manag. 2013, 76, 738–745. [Google Scholar] [CrossRef]
- Dalton, G.; Bardócz, T.; Blanch, M.; Campbell, D.; Johnson, K.; Lawrence, G.; Lilas, T.; Friis-Madsen, E.; Neumann, F.; Nikitas, N.; et al. Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. Renew. Sustain. Energy Rev. 2019, 107, 338–359. [Google Scholar] [CrossRef]
- Gideon, R.A.; Bou-Zeid, E. Collocating offshore wind and wave generators to reduce power output variability: A Multi-site analysis. Renew. Energy 2021, 163, 1548–1559. [Google Scholar] [CrossRef]
- Tedeschi, E.; Robles, E.; Santos, M.; Duperray, O.; Salcedo, F. Effect of energy storage on a combined wind and wave energy farm. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 2798–2804. [Google Scholar]
- Astariz, S.; Iglesias, G. Selecting optimum locations for co-located wave and wind energy farms. Part I: The Co-Location Feasibility index. Energy Convers. Manag. 2016, 122, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Rusu, L.; Ganea, D.; Mereuta, E. A joint evaluation of wave and wind energy resources in the Black Sea based on 20-year hindcast information. Energy Explor. Exploit. 2017, 36, 335–351. [Google Scholar] [CrossRef]
- Fusco, F.; Nolan, G.; Ringwood, J. Variability reduction through optimal combination of wind/wave resources—An Irish case study. Energy 2010, 35, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the European offshore wind and wave energy resource for combined exploitation. Renew. Energy 2017, 101, 244–264. [Google Scholar] [CrossRef]
- Astariz, S.; Iglesias, G. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect. Energies 2015, 8, 7344–7366. [Google Scholar] [CrossRef]
- Astariz, S.; Iglesias, G. Selecting optimum locations for co-located wave and wind energy farms. Part II: A case study. Energy Convers. Manag. 2016, 122, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Soukissian, T.H.; Karathanasi, F.E.; Zaragkas, D.K. Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data. Energy Convers. Manag. 2021, 237, 114092. [Google Scholar] [CrossRef]
- Ferrari, F.; Besio, G.; Cassola, F.; Mazzino, A. Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea. Energy 2020, 190, 116447. [Google Scholar] [CrossRef]
- Benassai, G.; Mariani, P.; Stenberg, C.; Christoffersen, M. A Sustainability Index of potential co-location of offshore wind farms and open water aquaculture. Ocean Coast. Manag. 2014, 95, 213–218. [Google Scholar] [CrossRef]
- Weiss, C.V.; Ondiviela, B.; Guinda, X.; Del Jésus, F.; González, J.; Guanche, R.; Juanes, J.A. Co-location opportunities for renewable energies and aquaculture facilities in the Canary Archipelago. Ocean Coast. Manag. 2018, 166, 62–71. [Google Scholar] [CrossRef]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Arántegui, R.L. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Huld, T.; Monforti-Ferrario, F. Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective. J. Appl. Meteorol. Clim. 2017, 56, 217–234. [Google Scholar] [CrossRef]
- Vega-Sanchez, M.A.; Castaneda-Jimenez, P.D.; Pena-Gallardo, R.; Ruiz-Alonso, A.; Morales-Saldana, J.A.; Palacios-Hernandez, E.R. Evaluation of complementarity of wind and solar energy resources over Mexico using an image processing approach. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Prasad, A.; Taylor, R.A.; Kay, M. Assessment of solar and wind resource synergy in Australia. Appl. Energy 2017, 190, 354–367. [Google Scholar] [CrossRef]
- Schindler, D.; Behr, H.D.; Jung, C. On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Convers. Manag. 2020, 218, 113016. [Google Scholar] [CrossRef]
- Ren, G.; Wan, J.; Liu, J.; Yu, D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019, 177, 262–275. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2019, 195, 703–724. [Google Scholar] [CrossRef]
- Ganea, D.; Amortila, V.; Mereuta, E.; Rusu, E. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability 2017, 9, 1025. [Google Scholar] [CrossRef] [Green Version]
- Moschos, E.; Manou, G.; Dimitriadis, P.; Afentoulis, V.; Koutsoyiannis, D.; Tsoukala, V.K. Harnessing wind and wave resources for a Hybrid Renewable Energy System in remote islands: A combined stochastic and deterministic approach. Energy Procedia 2017, 125, 415–424. [Google Scholar] [CrossRef]
- Loukogeorgaki, E.; Vagiona, D.G.; Vasileiou, M. Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece Incorporating Environmental Impact Assessment. Energies 2020, 11, 2095. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels From 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 3 March 2021). [CrossRef]
- Farjami, H.; Hesari, A.R.E. Assessment of sea surface wind field pattern over the Caspian Sea using EOF analysis. Reg. Stud. Mar. Sci. 2020, 35, 101254. [Google Scholar] [CrossRef]
- Tavares, L.F.D.A.; Shadman, M.; Assad, L.P.D.F.; Silva, C.; Landau, L.; Estefen, S. Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions. Energy 2020, 196, 117097. [Google Scholar] [CrossRef]
- Bruno, M.F.; Molfetta, M.G.; Totaro, V.; Mossa, M. Performance Assessment of ERA5 Wave Data in a Swell Dominated Region. J. Mar. Sci. Eng. 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Soukissian, T.; Chronis, G. Poseidon: A marine environmental monitoring, forecasting and information system for the Greek seas. Mediterr. Mar. Sci. 2000, 1, 71. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Chronis, G.T.; Nittis, K.; Diamanti, C. Advancement of Operational Oceanography in Greece: The Case of the Poseidon System. J. Atmos. Ocean Sci. 2002, 8, 93–107. [Google Scholar] [CrossRef]
- Gower, J.F.R. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. J. Geophys. Res. Space Phys. 1996, 101, 3817–3829. [Google Scholar] [CrossRef]
- Soukissian, T.; Kechris, C. About applying linear structural method on ocean data: Adjustment of satellite wave data. Ocean Eng. 2007, 34, 371–389. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Karathanasi, F.E.; Voukouvalas, E.G. Effect of outliers in wind speed assessment. In Proceedings of the Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan, Korea, 15–20 June 2014; pp. 362–369. [Google Scholar]
- Karathanasi, F.E.; Soukissian, T.H.; Axaopoulos, P.G. Calibration of wind directions in the Mediterranean Sea. In Proceedings of the International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–1 July 2016; pp. 491–497. [Google Scholar]
- Soukissian, T.; Papadopoulos, A. Effects of different wind data sources in offshore wind power assessment. Renew. Energy 2015, 77, 101–114. [Google Scholar] [CrossRef]
- Guillou, N. Estimating wave energy flux from significant wave height and peak period. Renew. Energy 2020, 155, 1383–1393. [Google Scholar] [CrossRef]
- Soukissian, T.; Papadopoulos, A.; Skrimizeas, P.; Karathanasi, F.; Axaopoulos, P.; Avgoustoglou, E.; Kyriakidou, H.; Tsalis, C.; Voudouri, A.; Gofa, F.; et al. Assessment of offshore wind power potential in the Aegean and Ionian Seas based on high-resolution hindcast model results. AIMS Energy 2017, 5, 268–289. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Gizari, N.; Chatzinaki, M. Wave potential of the Greek seas. In Proceedings of the WIT Transactions on Ecology and the Environment, Alicante, Spain, 11–13 April 2011; pp. 203–213. [Google Scholar]
- Lin, Z.; Liu, X.; Lotfian, S. Impacts of water depth increase on offshore floating wind turbine dynamics. Ocean Eng. 2021, 224, 108697. [Google Scholar] [CrossRef]
- Pandit, R.; Kolios, A. SCADA Data-Based Support Vector Machine Wind Turbine Power Curve Uncertainty Estimation and Its Comparative Studies. Appl. Sci. 2020, 10, 8685. [Google Scholar] [CrossRef]
- Sohoni, V.; Gupta, S.C.; Nema, R.K. A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their Applications in Wind Based Energy Systems. J. Energy 2016, 2016, 8519785. [Google Scholar] [CrossRef] [Green Version]
- Marañon-Ledesma, H.; Tedeschi, E. Energy storage sizing by stochastic optimization for a combined wind-wave-diesel supplied system. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 426–431. [Google Scholar]
- Soukissian, T. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng. 2014, 91, 91–110. [Google Scholar] [CrossRef]
- Rusu, E.; Soares, C.G. Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renew. Energy 2013, 58, 34–49. [Google Scholar] [CrossRef]
- Greenwood, C. The Impact of Large Scale Wave Energy Converter Farms on the Regional Wave Climate. Ph.D. Thesis, University of the Highlands and Islands and The University of Aberdeen, Aberdeen, UK, 2015. [Google Scholar]
Buoy Location | Coordinates | Measurement Period |
---|---|---|
Mykonos | 37.51° N, 25.46° E | 1999–2012 |
Lesvos | 39.15° N, 25.81° E | 1999–2012 |
Santorini | 36.26° N, 25.50° E | 1999–2012 |
Athos | 39.96° N, 24.72° E | 2000–2015 |
Pylos | 36.83° N, 21.62° E | 2007–2015 |
Zakynthos | 37.95° N, 20.61° E | 2008–2011 |
Parameter | Athos | Mykonos | Pylos | Santorini | Lesvos | Zakynthos |
---|---|---|---|---|---|---|
0.179 | 0.272 | 0.404 | 0.306 | 0.201 | 0.186 | |
0.039 | 0.025 | 0.295 | −0.157 | 0.030 | 0.024 | |
0.959 | 0.922 | 0.956 | 0.873 | 0.905 | 0.935 | |
0.132 | 0.205 | 0.307 | 0.232 | 0.148 | 0.142 | |
−1.304 | −11.969 | 26.263 | −23.392 | 2.868 | 2.692 | |
0.224 | 0.274 | 0.278 | 0.308 | 0.276 | 0.234 |
Parameter | Athos | Mykonos | Pylos | Santorini | Lesvos | Zakynthos |
---|---|---|---|---|---|---|
0.651 | 0.808 | 1.491 | 0.822 | 0.638 | 0.898 | |
0.341 | 0.200 | 1.310 | −0.131 | 0.294 | 0.478 | |
0.890 | 0.832 | 0.908 | 0.731 | 0.870 | 0.877 | |
0.522 | 0.641 | 1.318 | 0.672 | 0.508 | 0.743 | |
6.328 | −0.741 | 23.628 | −7.238 | 4.826 | 6.553 | |
0.134 | 0.176 | 0.136 | 0.183 | 0.139 | 0.158 |
Parameter | Athos | Mykonos | Pylos | Santorini | Lesvos | Zakynthos |
---|---|---|---|---|---|---|
1.533 | 1.627 | 1.660 | 1.641 | 2.025 | 1.959 | |
−0.159 | 0.232 | 0.509 | −0.249 | 0.829 | 0.309 | |
0.874 | 0.879 | 0.795 | 0.821 | 0.807 | 0.716 | |
1.220 | 1.326 | 1.350 | 1.309 | 1.649 | 1.566 | |
−34.687 | −19.405 | −9.060 | −25.459 | −6.471 | −25.932 | |
0.320 | 0.235 | 0.344 | 0.287 | 0.305 | 0.406 |
Device | Point A [38° N, 26.5° E] | Point B [35° N, 27.5° E] |
---|---|---|
1 Vestas (GWh) | 33.080 | 34.406 |
1 Pelamis (MWh) | 64.280 | 347.321 |
1 × 12 Array of Pelamis (MWh) | 771.360 | 4167.852 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardakaris, K.; Boufidi, I.; Soukissian, T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere 2021, 12, 1360. https://doi.org/10.3390/atmos12101360
Kardakaris K, Boufidi I, Soukissian T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere. 2021; 12(10):1360. https://doi.org/10.3390/atmos12101360
Chicago/Turabian StyleKardakaris, Kimon, Ifigeneia Boufidi, and Takvor Soukissian. 2021. "Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data" Atmosphere 12, no. 10: 1360. https://doi.org/10.3390/atmos12101360
APA StyleKardakaris, K., Boufidi, I., & Soukissian, T. (2021). Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere, 12(10), 1360. https://doi.org/10.3390/atmos12101360