Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources
2.2.1. Precipitation and Streamflow
2.2.2. ENSO
2.2.3. PDO
2.2.4. Sunspot
3. Methodology
3.1. Principal Component Analysis
3.2. Continuous Wavelet Transform
3.3. Cross-Wavelet Transform and Wavelet Coherence
4. Results
4.1. Temporal Patterns of Hydrological Variables
4.2. XWT between Hydrological Variables and Teleconnections
4.3. WTC between Hydrological Variables and Teleconnections
4.4. XWT and WTC between Annual Streamflow and PDO/SSN
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Cai, S.; Ni, P.; Zhan, W. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China. Sci. Rep. 2020, 10, 16743. [Google Scholar] [CrossRef]
- Yoon, J.H.; Wang, S.Y.; Gillies, R.; Kravitz, B.; Hipps, L.; Rasch, P. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun. 2015, 6, 8657. [Google Scholar] [CrossRef] [Green Version]
- Canchala, T.; Cerón, W.L.; Francés, F.; Carvajal-Escobar, Y.; Andreoli, R.; Kayano, M.; Alfonso-Morales, W.; Caicedo-Bravo, E.; Souza, R. Streamflow Variability in Colombian Pacific Basins and Their Teleconnections with Climate Indices. Water 2020, 12, 526. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, P. Spatial and temporal variability of Canadian seasonal precipitation (1900–2000). Adv. Water Resour. 2006, 29, 1846–1865. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Booij, M.; Oluwafemi, A.; Hashmi, M.; Ali, S.; Munir, S. Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China. Water 2020, 12, 842. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Gan, T.; Xie, J.; Wang, N. Spatiotemporal variability of Alberta’s seasonal precipitation, their teleconnection with large-scale climate anomalies and sea surface temperature. Int. J. Climatol. 2013, 34, 2899–2917. [Google Scholar] [CrossRef]
- Pasquini, A.; Depetris, P. Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J. Hydrol. 2007, 333, 385–399. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y. Decadal predictability of river discharge with climate oscillations over the 20th and early 21st century. Geophys. Res. Lett. 2015, 42, 10689–10695. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, H.; Spötl, C.; Cai, Y.; Sinha, A.; Tan, L.; Yi, L.; Yan, H.; Kathayat, G.; Ning, Y.; et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO. Sci. Rep. 2018, 8, 12344. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.; Cayan, D.; McCabe, G.; Marengo, J. Multiscale streamflow variability associated with el niño/southern oscillation. In El Niño and the Southern Oscillation–Multiscale Variability and Global and Regional Impacts; Diaz, H., Markgraf, V., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 113–146. ISBN 978-0-521-62138-0. [Google Scholar]
- Emerton, R.; Cloke, H.; Stephens, E.; Zsoter, E.; Woolnough, S.; Pappenberger, F. Complex picture for likelihood of ENSO-driven flood hazard. Nat. Commun. 2017, 8, 14796. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Kumar, A.; Zhu, J.; Huang, B.; Tseng, Y.; Wang, X. On the Shortening of the Lead Time of Ocean Warm Water Volume to ENSO SST Since 2000. Sci. Rep. 2017, 7, 4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrence, C.; Webster, P. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Glantz, M.; Katz, R.; Nicholls, N. Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact; Glantz, M., Katz, R., Nicholls, N., Eds.; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0-521-36475-1. [Google Scholar]
- Mantua, N.; Hare, S.; Zhang, Y.; Wallace, J.; Francis, R. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- McCabe, G.; Dettinger, M. Primary Modes and Predictability of Year-to-Year Snowpack Variations in the Western United States from Teleconnections with Pacific Ocean Climate. J. Hydrometeorol. 2002, 3, 13–25. [Google Scholar] [CrossRef]
- Beebee, R.; Manga, M. Variation in the Relationship Between Snowmelt Runoff In Oregon and ENSO And PDO. J. Am. Water Resour. Assoc. 2004, 40, 1011–1024. [Google Scholar] [CrossRef]
- Harshburger, B.; Ye, H.; Dzialoski, J. Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho. J. Hydrol. 2002, 264, 157–169. [Google Scholar] [CrossRef]
- Hanson, R.; Newhouse, M.; Dettinger, M. A methodology to asess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J. Hydrol. 2004, 287, 252–269. [Google Scholar] [CrossRef]
- Jain, S.; Lall, U. Floods in a changing climate: Does the past represent the future? Water Resour. Res. 2001, 37, 3193–3205. [Google Scholar] [CrossRef]
- Hidalgo, H.; Dracup, J. ENSO and PDO Effects on Hydroclimatic Variations of the Upper Colorado River Basin. J. Hydrometeorol. 2003, 4, 5–23. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, C.; Zhang, M.; Zhang, Y.; Lin, M.; Qiao, F. The causality from solar irradiation to ocean heat content detected via multi-scale Liang–Kleeman information flow. Sci. Rep. 2020, 10, 17141. [Google Scholar] [CrossRef]
- Wu, Y.; He, Y.; Wu, M.; Chen, L.; Gao, S.; Xu, Y. Multifractality and cross-correlation analysis of streamflow and sediment fluctuation at the apex of the Pearl River Delta. Sci. Rep. 2018, 8, 16553. [Google Scholar] [CrossRef]
- Camp, C.; Tung, K. Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett. 2007, 34, L14703. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Tung, K. Solar Cycles in 150 Years of Global Sea Surface Temperature Data. J. Clim. 2010, 23, 3234–3248. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.; Arblaster, J.; Branstator, G.; Loon, H. A Coupled Air–Sea Response Mechanism to Solar Forcing in the Pacific Region. J. Clim. 2008, 21, 2883–2897. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.; Okeke, F. Impacts of sunspot number and Geomagnetic aa-index on climate of Wet Zone West Africa during solar cycles 22–24. Sci. Rep. 2021, 11, 11500. [Google Scholar] [CrossRef] [PubMed]
- Reid, G. Influence of solar variability on global sea surface temperatures. Nature 1987, 329, 142–143. [Google Scholar] [CrossRef]
- White, W.; Lean, J.; Cayan, D.; Dettinger, M. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. 1997, 102, 3255–3266. [Google Scholar] [CrossRef]
- Cerón, W.; Kayano, M.; Andreoli, R.; Avila, A.; Canchala, T.; Francés, F.; Rivera, I.; Alfonso-Morales, W.; Souza, R.; Carvajal-Escobar, Y. Streamflow Intensification Driven by the Atlantic Multidecadal Oscillation (AMO) in the Atrato River Basin, Northwestern Colombia. Water 2020, 12, 216. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, P.; Burn, D. Wavelet analysis of variability in annual Canadian streamflows. Water Resour. Res. 2004, 40, W03105. [Google Scholar] [CrossRef]
- Ha, S.; Liu, D.; Mu, L. Prediction of Yangtze River streamflow based on deep learning neural network with El Niño–Southern Oscillation. Sci. Rep. 2021, 11, 11738. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Q.; Singh, V. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Climatol. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Hartmann, H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology 2007, 85, 143–154. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Zhang, H.; Piao, L.; Xoplaki, E.; Luterbacher, J. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System. Sci. Rep. 2015, 5, 8143. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Brown, C.; Kwon, H.; Lall, U.; Zhang, J.; Hayashi, S.; Chen, Z. Climate teleconnections to Yangtze river seasonal streamflow at the Three Gorges Dam, China. Int. J. Climatol. 2007, 27, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Yuan, N.; Xoplaki, E.; Zhu, C.; Luterbacher, J. A novel way to detect correlations on multi-timescales, with temporal evolution and for multi-variables. Sci. Rep. 2016, 6, 27707. [Google Scholar] [CrossRef] [Green Version]
- Dong, X. Influences of the Pacific Decadal Oscillation on the East Asian Summer Monsoon in non–ENSO years. Atmos. Sci. Lett. 2016, 17, 115–120. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Z.; Zuo, D.; Ban, C.H. Hydro-Meteorological Trends in the Yarlung Zangbo River Basin and Possible Associations with Large-Scale Circulation. Water 2020, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ding, Q.; Chen, M.; Zhong, L.; Labat, D.; Zhang, M.; Mao, Y.; Li, Y. Analyses of Runoff and Sediment Transport and their Drivers in a Rare Earth Mine Drainage Basin of the Yangtze River, China. Water 2020, 12, 2283. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, B.; Cui, Y.; Ma, S. Analysis on the Characteristics of Dry and Wet Periods in The Yangtze River Basin. Water 2020, 12, 2960. [Google Scholar] [CrossRef]
- Guo, R.; Zhu, Y.; Liu, Y. A Comparison Study of Precipitation in the Poyang and the Dongting Lake Basins from 1960–2015. Sci. Rep. 2020, 10, 3381. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, D.; Zuo, J.; Wang, Y. Hydrological alteration of the upper Yangtze River and its possible links with large-scale climate indices. Nord. Hydrol. 2019, 50, 1120–1137. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, J.; Li, K.; Luo, Y.; Yang, D.; Zhou, C. Spatiotemporal Change of Plum Rains in the Yangtze River Delta and Its Relation with EASM, ENSO, and PDO During the Period of 1960–2012. Atmosphere 2019, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wu, Y.; Xu, G. Variation of reference evapotranspiration and its teleconnection with multiple large-scale climate oscillations in the Yangtze River Delta, China. Int. J. Climatol. 2019, 39, 2630–2645. [Google Scholar] [CrossRef]
- Tang, J.; Li, Q.; Chen, J. Summertime runoff variations and their connections with Asian summer monsoons in the Yangtze River basin. J. Water Clim. Chang. 2018, 9, 89–100. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Liu, Y.; Zhao, X.; Zhang, J.; Rui, Y. Characteristics of temperature evolution from 1960 to 2015 in the Three Rivers’ Headstream Region, Qinghai, China. Sci. Rep. 2020, 10, 20272. [Google Scholar] [CrossRef]
- Li, Z.; Kang, L.; Zhou, L.; Zhu, M. Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction. Water 2021, 13, 575. [Google Scholar] [CrossRef]
- Wernstedt, K.; Hersh, R. Climate forecasts in flood planning: Promise and ambiguity. J. Am. Water Resour. Assoc. 2002, 38, 1703–1713. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Biswas, A.; Gharabaghi, B.; Hu, W. A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. J. Hydrol. 2019, 574, 288–307. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Ahmad, S. Wavelet analyses of western US streamflow with ENSO and PDO. J. Water Clim. Chang. 2017, 8, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wallace, J.; Battisti, D. ENSO–like Interdecadal Variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Mantua, N.; Hare, S. The Pacific Decadal Oscillation. J. Ocean. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Minobe, S. A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett. 1997, 24, 683–686. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Miró, J.; Caselles, V.; Estrela, M. Multiple imputation of rainfall missing data in the Iberian Mediterranean context. Atmos. Res. 2017, 197, 313–330. [Google Scholar] [CrossRef]
- Rousi, E.; Anagnostopoulou, C.; Tolika, K.; Maheras, P. Representing teleconnection patterns over Europe: A comparison of SOM and PCA methods. Atmos. Res. 2015, 152, 123–137. [Google Scholar] [CrossRef]
- Tošić, L.; Zorn, M.; Ortar, J.; Unkašević, M.; Gavrilov, M.; Marković, S. Annual and seasonal variability of precipitation and temperatures in Slovenia from 1961 to 2011. Atmos. Res. 2016, 168, 220–233. [Google Scholar] [CrossRef]
- Wilks, D. Chapter 12—Principal component (EOF) analysis. In Statistical Methods in the Atmospheric Sciences; Wilks, D., Ed.; Academic Press: New York, NY, USA, 2011; pp. 519–562. ISBN 978-0-12-385022-5. [Google Scholar] [CrossRef]
- Capozzoli, C.; Cardoso, A.; Ferraz, S. River Flow Variability Patterns in Main Brazilian Basins and Association with Climate Indices. Rev. Bras. Anestesiol. 2017, 32, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Sang, Y. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Holschneider, M. Wavelets: An analysis tool. In Oxford Mathematical Monographs; Oxford University Press: Oxford, UK, 1995; ISBN 978-0-198-50521-1. [Google Scholar]
- Grinsted, A.; Moore, J.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple–Wavelet Coherence of World’s Large Rivers With Meteorological Factors and Ocean Signals. J. Geophys. Res. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Keener, V.; Feyereisen, G.; Lall, U.; Jones, J.; Bosch, D.; Lowrance, R. El-Niño/Southern Oscillation (ENSO) influences on monthly NO3 load and concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA). J. Hydrol. 2010, 381, 352–363. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fan, D.; Wang, H.; Yang, Z. Water discharge variability of Changjiang (Yangtze) and Huanghe (Yellow) Rivers and its response to climatic changes. Chin. J. Oceanol. Limnol. 2014, 32, 1392–1405. [Google Scholar] [CrossRef]
- Chiew, F.; McMahon, T. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J. 2002, 47, 505–522. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Xing, B. Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin. Atmosphere 2021, 12, 1361. https://doi.org/10.3390/atmos12101361
Yang R, Xing B. Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin. Atmosphere. 2021; 12(10):1361. https://doi.org/10.3390/atmos12101361
Chicago/Turabian StyleYang, Ruting, and Bing Xing. 2021. "Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin" Atmosphere 12, no. 10: 1361. https://doi.org/10.3390/atmos12101361
APA StyleYang, R., & Xing, B. (2021). Possible Linkages of Hydrological Variables to Ocean–Atmosphere Signals and Sunspot Activity in the Upstream Yangtze River Basin. Atmosphere, 12(10), 1361. https://doi.org/10.3390/atmos12101361