Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East
Abstract
:1. Introduction
2. The Severe Dust Storm of Early April 2015
3. Data and Methods
3.1. Observed Meteorological Data
3.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Data
3.3. ERA5 Global Reanalysis Dataset
3.4. CALIPSO
3.5. Media Reports
4. Synoptic Analysis
4.1. Analysis of SYNOP Stations and Satellite Remote Sensing of the Dust Event
4.2. Synoptic Analysis of the Dust Storm
4.3. CALIPSO Data Analysis
5. Socio-Economic Impacts
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Description |
---|---|
5 | Haze |
6 | Widespread dust in suspension in the air, not raised by wind at or near the station at the time of observation |
7 | Dust or sand raised by wind at or near the station at the time of observation, but no well-developed dust whirl(s) or sand whirl(s), and no dust storm or sandstorm seen |
9 | Dust storm or sandstorm within sight at the time of observation, or at the station during the preceding hour |
30 | Slight or moderate dust storm or sandstorm-has decreased during the preceding hour |
31 | Slight or moderate dust storm or sandstorm-no appreciable change during the preceding hour |
32 | Slight or moderate dust storm or sandstorm-has begun or has increased during the preceding hour |
33 | Severe dust storm or sandstorm-has decreased during the preceding hour |
34 | Severe dust storm or sandstorm-no appreciable change during the preceding hour |
35 | Severe dust storm or sandstorm-has begun or has increased during the preceding hour |
98 | Thunderstorm combined with dust storm or sandstorm at time of observation-thunderstorm at time of observation |
References
- Middleton, N.J. Dust storms in the Middle East. J. Arid. Environ. 1986, 10, 83–96. [Google Scholar] [CrossRef]
- Barkan, J.; Kutiel, H.; Alpert, P. Climatology of dust sources in North Africa and the Arabian Peninsula, based on TOMS data. Indoor Built Environ. 2004, 13, 407–419. [Google Scholar] [CrossRef]
- Cao, H.; Amiraslani, F.; Liu, J.; Zhou, N. Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci. Total Environ. 2015, 502, 224–235. [Google Scholar] [CrossRef]
- Hamzeh, N.; Karami, S.; Kaskaoutis, D.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Knippertz, P.; Stuut, J.B.W. Mineral Dust—A Key Player in the Earth System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Guieu, C.; Al Azhar, M.; Aumont, O.; Mahowald, N.; Lévy, M.; Éthé, C.; Lachkar, Z. Major impact of dust deposition on the productivity of the Arabian Sea. Geophys. Res. Lett. 2019, 46, 6736–6744. [Google Scholar] [CrossRef]
- Sirocko, F.; Garbe-Schönberg, D.; Devey, C. Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years. Glob. Planet. Chang. 2000, 26, 217–303. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Lau, W.K.; Pu, B.; Wang, C. Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Sci. Rev. 2021, 215, 103562. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- UNDRR. Disaster. 2021. Available online: https://www.undrr.org/terminology/disaster (accessed on 24 September 2021).
- Middleton, N.J.; Tozer, P.; Tozer, B. Sand and dust storms: Underrated natural hazards. Disasters 2019, 43, 390–409. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Amrane, A.; Polosa, R.; Hopke, P.K.; Goudarzi, G.; Mohammadi, M.J.; Sicard, P.; Armin, H. Impact of Middle Eastern dust storms on human health. Atmos. Pollut. Res. 2017, 8, 606–613. [Google Scholar] [CrossRef]
- Soleimani, Z.; Teymouri, P.; Boloorani, A.D.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bio-aerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020, 223, 117187. [Google Scholar] [CrossRef]
- Alshawaf, M.; Poudineh, R.; Alhajeri, N.S. Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renew. Sustain. Energy Rev. 2020, 134, 110346. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Alasis, C.; Xydis, G.A. On the wind blade’s surface roughness due to dust accumulation and its impact on the wind turbine’s performance: A heuristic QBlade-based modeling assessment. Environ. Prog. Sustain. Energy 2020, 39, 13296. [Google Scholar] [CrossRef]
- AlKheder, S.; AlKandari, A. The impact of dust on Kuwait International Airport operations: A case study. Int. J. Environ. Sci. Technol. 2020, 17, 3467–3474. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Dousari, A.; Misak, R.; Al-Sudairawi, M.; Naseeb, A.; Al-Dashti, H.; Al-Dousari, N. Economic impact and risk assessment of Sand and Dust Storms (SDS) on the oil and gas industry in Kuwait. Sustainability 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Hatami, Z.; Rezvani Moghaddam, P.; Rashki, A.; Nasiri Mahallati, M.; Habibi Khaniani, B. Effects of dust deposition from two major dust source regions of Iran on wheat (Triticum aestivum L.) production. Int. J. Environ. Stud. 2017, 74, 991–1000. [Google Scholar] [CrossRef]
- Gross, A.; Tiwari, S.; Shtein, I.; Erel, R. Direct foliar uptake of phosphorus from desert dust. New Phytol. 2021, 230, 2213–2225. [Google Scholar] [CrossRef]
- Nativ, R.; Adar, E.; Dahan, O.; Nissim, I. Water salinization in arid regions—Observations from the Negev desert, Israel. J. Hydrol. 1997, 196, 271–296. [Google Scholar] [CrossRef]
- Hu, Z.; Kang, S.; Li, X.; Li, C.; Sillanpää, M. Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmos. Environ. 2020, 223, 117288. [Google Scholar] [CrossRef]
- Ai, N.; Polenske, K.R. Socioeconomic Impact Analysis of Yellow-dust Storms: An Approach and Case Study for Beijing. Econ. Syst. Res. 2008, 20, 187–203. [Google Scholar] [CrossRef]
- Miri, A.; Ahmadi, H.; Ekhtesasi, M.R.; Panjehkeh, N.; Ghanbari, A. Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Int. J. Environ. Stud. 2009, 66, 343–355. [Google Scholar] [CrossRef]
- Tozer, P.; Leys, J. Dust storms–what do they really cost? Rangel. J. 2013, 35, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Al-Hemoud, A.; Al-Sudairawi, M.; Neelamanai, S.; Naseeb, A.; Behbehani, W. Socioeconomic effect of dust storms in Kuwait. Arab. J. Geosci. 2017, 10, 18. [Google Scholar] [CrossRef]
- Cuevas, E.; Milford, C.; Basart, S. (Eds.) Desert Dust Outbreak in the Canary Islands (February 2020): Assessment and Impacts. Global Atmosphere Watch (GAW); Report No. 259, WWRP 2021-1; World Meteorological Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Badarinath, K.; Kharol, S.K.; Kaskaoutis, D.; Sharma, A.R.; Ramaswamy, V.; Kambezidis, H. Long-range transport of dust aerosols over the Arabian Sea and Indian region—A case study using satellite data and ground-based measurements. Glob. Planet. Chang. 2010, 72, 164–181. [Google Scholar] [CrossRef]
- Boloorani, A.D.; Nabavi, S.O.; Bahrami, H.A.; Mirzapour, F.; Kavosi, M.; Abasi, E.; Azizi, R. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis. J. Environ. Health Sci. Eng. 2014, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Al-Dousari, A.; Domenico, D.; Modi, A. Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian Gulf. Sustainability 2017, 9, 1526. [Google Scholar] [CrossRef] [Green Version]
- Ledari, D.G.; Hamidi, M.; Shao, Y. Evaluation of the 13 April 2011 frontal dust storm in West Asia. Aeolian Res. 2020, 44, 100592. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Guney, M.; Fathian, A.; Geng, X.; Kim, J.R. Destinations frequently impacted by dust storms originating from southwest Iran. Atmos. Res. 2021, 248, 105264. [Google Scholar] [CrossRef]
- EUMETSAT. The Spectrum of Dust Colours over the Arabian Peninsula. 2015. Available online: https://www.eumetsat.int/spectrum-dust-colours-over-arabian-peninsula (accessed on 1 May 2021).
- Beegum, N.; Gherboudj, I.; Chaouch, N.; Temimi, M.; Ghedira, H. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula. Atmos. Res. 2018, 199, 62–81. [Google Scholar] [CrossRef]
- Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappil, V.K.; Aldababesh, A.; Lyapustin, A.; Chaouch, N.; Al Hammadi, F.; et al. Analysis of a severe dust storm and its impact on air quality condi-tions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health 2019, 12, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Harshvardhan, H.; Gladich, I.; Ackermann, L.; Ayoub, M.A. Anatomy of a Severe Dust Storm in the Middle East: Impacts on Aerosol Optical Properties and Radiation Budget. Aerosol Air Qual. Res. 2020, 20, 155–165. [Google Scholar] [CrossRef]
- Ababneh, Z.Q.; Ababneh, A.M.; Alsagabi, S.; Almasoud, F. A study of the radioactivity in the dust storm event of April 2015 in Arabian Peninsula. Radiat. Prot. Dosim. 2017, 179, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Ghattargi, V.C.; Garg, M.; Raina, S.; Silva, J.D.; Pawar, S.P.; Rahi, P.; Shouche, Y.S. Assessment of airborne mi-crobial community in Indian cities during the Middle East dust storm. Curr. Sci. 2019, 117, 1693. [Google Scholar] [CrossRef]
- Aswini, M.; Kumar, A.; Das, S.K. Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data—A case study during a dust storm over the Arabian Sea. Atmos. Res. 2020, 239, 104910. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Abraham, M.; Hassan, H.; Ashraf, A.M.; Fthenou, E.; Sadoun, E.; Kakosimos, K.E. Modelling of PM10 and PM2. 5 building infiltration during a dust event in Doha, Qatar. ProScience 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Irfan, F.B.; Pathan, S.A.; Bhutta, Z.A.; Abbasy, M.E.; Elmoheen, A.; Alsaeidy, A.M.; Tariq, T.; Hugelmeyer, C.D.; Dardouri, H.; Khial, N.B.; et al. ED case presentations during the largest sandstorm in the Middle East. J. Emerg. Med. Trauma Acute Care 2016, 2016, 164. [Google Scholar] [CrossRef]
- Irfan, F.B.; Pathan, S.A.; Bhutta, Z.A.; Abbasy, M.E.; Elmoheen, A.; Elsaeidy, A.M.; Tariq, T.; Hugelmeyer, C.D.; Dardouri, H.; Shah, N.B.K.B.; et al. Health System Response and Adaptation to the Largest Sandstorm in the Middle East. Disaster Med. Public Health Prep. 2017, 11, 227–238. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Riley, M.; Leys, J.; Salter, D. Dust storm event of February 2019 in Central and East Coast of Australia and evidence of long-range transport to New Zealand and Antarctica. Atmosphere 2019, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, W.D. Dust and Sand Forecasting in Iraq and Adjoining Countries; No. AWS/TN–91/001; Air Weather Service: Scott Afb, IL, USA, 1991. [Google Scholar]
- Hermida, L.; Merino, A.; Sanchez, J.L.; Fernández-González, S.; García-Ortega, E.; Lopez, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- McKendry, I.; Strawbridge, K.; Karumudi, M.L.; O’Neill, N.; Macdonald, A.M.; Leaitch, R.; Jaffe, D.; Cottle, P.; Sharma, S.; Sheridan, P.; et al. Californian forest fire plumes over Southwestern British Columbia: Lidar, sunphotometry, and mountaintop chemistry observations. Atmos. Chem. Phys. Discuss. 2011, 11, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Barnaba, F.; Gobbi, G.P. Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases. J. Geophys. Res. Space Phys. 2001, 106, 3005–3018. [Google Scholar] [CrossRef]
- Liu, Z.; Omar, A.; Vaughan, M.A.; Hair, J.; Kittaka, C.; Hu, Y.; Powell, K.; Trepte, C.; Winker, D.; Hostetler, C.; et al. CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Liu, Z.; Sugimoto, N.; Murayama, T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Appl. Opt. 2002, 41, 2760–2767. [Google Scholar] [CrossRef] [Green Version]
- Al Badi, H.; Boland, J.; Bruce, D.; Albadi, M. Dust Event Impact on Photovoltaic Systems: Role of humidity in soiling and self-cleaning. In Proceedings of the 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–15 August 2018; pp. 342–345. [Google Scholar]
- Tsiouri, V.; Kakosimos, K.E.; Kumar, P. Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—A review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Saudi Gazette. Sandstorms Cancel 465 Saudi Arabian Airlines Flights. 2015. Available online: https://english.alarabiya.net/News/gulf/2015/04/06/Sandstorms-cancel-465-Saudia-flights (accessed on 17 March 2021).
- Indian Express. Operation Raahat: Pilots Dealt with Dust Storm, Damaged Machines. 2015. Available online: https://indianexpress.com/article/india/india-others/operation-raahat-pilots-dealt-with-dust-storm-damaged-machines/ (accessed on 19 March 2021).
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Middleton, N.J. Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosci. 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, B.H.; Maghrabi, A.L.; Tapper, N. The March 2009 dust event in Saudi Arabia: Precursor and supportive environment. Bull. Am. Meteorol. Soc. 2013, 94, 515–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Kucera, P.A.; Alharbi, B.H.; Pan, L.; Ghulam, A. Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case. Atmos. Environ. 2015, 119, 118–130. [Google Scholar] [CrossRef]
- Kunte, P.D.; Aswini, M.A. Detection and monitoring of super sandstorm and its impacts on Arabian sea—Remote sensing approach. Atmos. Res. 2015, 160, 109–125. [Google Scholar] [CrossRef]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. Discuss. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- UNESCAP-APDIM. Guideline on Monitoring and Reporting the Impact of Sand and Dust Storms through the Sendai Framework Monitoring; APDIM: Tehran, Iran, 2020. [Google Scholar]
- Blondin, D.; Boin, A. Cooperation in the face of transboundary crisis: A framework for analysis. Perspect. Public Manag. Gov. 2020, 3, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.J. Health in dust belt cities and beyond. BMJ 2020, 371, m3089. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wen, B.; Li, S.; Guo, Y. Sand and dust storms in Asia: A call for global cooperation on climate change. Lancet Planet. Health 2021, 5, e329–e330. [Google Scholar] [CrossRef]
- WMO. Manual on Codes, International Codes Volume I.1, Annex II to the WMO Technical Regulations Part A–Al-Phanumeric Codes; WMO: Geneva, Switzerland, 2019. [Google Scholar]
Sector | Impacts |
---|---|
Health | Qatar: Full emergency department incident response activated at Hamad General Hospital, Qatar’s only tertiary care centre, due to surge of hundreds of cases UAE: Health warnings issued by National Emergency and Crisis Disaster Management Authority, advising adults and children with asthma or allergies to stay indoors; Dubai hospitals reported increase in patients complaining of breathing difficulties Iran: Department of Environment announced the atmospheric dust concentration in Bandar Abbas was 30 times higher than recommended health level |
Education | Qatar: Schools closed 2 April Saudi Arabia: Education Ministry closed schools in over 45 towns and cities in central and eastern provinces 2 April |
Construction | UAE, Sharjah: Construction workers told to stop work to ensure their safety until the storm and high winds passed |
Road transport | Saudi Arabia: Riyadh Traffic Department reported 354 traffic accidents that caused eight injuries in the Saudi capital during the dust storm on 1 April UAE, Sharjah: 82 road traffic accidents blamed on dust event; Sharjah Roads & Transport Authority distributed face masks to commuters at Al Jubeil bus station UAE, Dubai: 135 traffic accidents from 06:00 to 12:00 (2 April); bus services to Abu Dhabi stopped due to zero visibility Qatar: ministry of interior issued alert to motorists, but motor vehicle crash hospital cases increased ×5 during the dust storm and one pedestrian was killed while crossing a street in low visibility |
Maritime transport | Saudi Arabia: King Abdul Aziz port in Dammam suspended all shipping arrivals and departures from 17:30 GMT on 1 April Qatar: Coast Guard rescued 11 fishermen at sea 1–2 April Iran: Shahid Rajaee port in Bandar Abbas closed on 2 April |
Aviation | Flight delays, diversions and cancellations in Saudi Arabia: Riyadh (RUH), Dammam (DMM), Qassim (BSA), Al Qaisumah/Hafr al Batin (AQI) Bahrain: (BAH) Qatar: Doha (DIA) UAE: Dubai International (DXB), Al Maktoum International (DWC), Sharjah (SHJ), Ras Al Khaimah (RKT), Hafr al-Batin (AQI) Oman: Muscat (MCT) Yemen: Sanaa (SAH) Iran: Chabahar (ZBR), Qeshm (GSM), Kish (KIH), Bandar Abbas (BND), Bushehr (BUZ), Kharg (KHK) |
Others | Saudi Arabia: National holiday declared on 2 April due to inclement weather, particularly for schools, government and private establishments; trains to and from Riyadh cancelled UAE, Abu Dhabi: Adnoc Cycle Challenge postponed due to health and safety considerations. Desert Challenge Rally final stage cancelled due to health and safety considerations. Yas Drag Night (car and motorbike drag racing event) postponed. UAE, Dubai: Dubai Municipality prohibited swimming at Dubai beaches Oman: Power output from photovoltaic (PV) system at Muscat reduced by 37% on 3 April, the day after passage of the dust storm front, due to soiling and increased atmospheric turbidity |
Country | National Standard PM10 24-h Mean (μg/m3) * | April 2015 Event PM10 | PM10 (μg/m3) | April 2015 Reference |
---|---|---|---|---|
Iran | 50 | Bandar Abbas 2 April | >1500 | Iranian Department of Environment |
Saudi Arabia | 340 | Jeddah 2 April | 133 (city center); 155 (outskirts) | Kadi (pers. com.) |
Qatar | 150 | Doha 2 April | >10,000 ** | [36] |
UAE | 150 | Abu Dhabi and Dubai 2 April | >1500 *** | [35] |
India | 100 | Goa 6–9 April | 150–180 | [39] |
Mumbai 7 April | 102.5 | [38] |
Airport (IATA 3-Letter Code) | 1 April | 2 April | 3 April |
---|---|---|---|
King Fahd International Airport, Dammam, Saudi Arabia (DMM) | 61.7 | 6.8 | 14.0 |
King Khalid International Airport, Riyadh, Saudi Arabia (RUH) | 49.4 | 5.3 | 5.8 |
Hamad International Airport, Doha, Qatar (DOH) | 75.0 | 35.5 | 55.3 |
Dubai International Airport, UAE (DXB) | 69.5 | 40.7 | 49.9 |
Date (2015) | Departure | Destination | Cancelled | Diverted |
---|---|---|---|---|
1 April | Tehran | Kish Island | o | |
1 April | Tehran | Kish Island | o | |
1 April | Booshehr | Mashhad | o | |
1 April | Booshehr | Tehran | o | |
1 April | Booshehr | Tehran | o | |
1 April | Booshehr | Kharg Island | o | |
1 April | Bandar Abbas | Tehran | o | |
2 April | Tehran | Kish Island | o | |
2 April | Tehran | Kish Island | o | |
2 April | Tehran | Qeshm Island | o | |
2 April | Bandar Abbas | Tehran | o | |
3 April | Bandar Abbas | Kish Island | o | |
3 April | Booshehr | Tehran | o | |
3 April | Tehran | Chabahar | o | |
3 April | Tehran | Chabahar | o |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East. Atmosphere 2021, 12, 1435. https://doi.org/10.3390/atmos12111435
Middleton N, Kashani SS, Attarchi S, Rahnama M, Mosalman ST. Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East. Atmosphere. 2021; 12(11):1435. https://doi.org/10.3390/atmos12111435
Chicago/Turabian StyleMiddleton, Nick, Saviz Sehat Kashani, Sara Attarchi, Mehdi Rahnama, and Sahar Tajbakhsh Mosalman. 2021. "Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East" Atmosphere 12, no. 11: 1435. https://doi.org/10.3390/atmos12111435
APA StyleMiddleton, N., Kashani, S. S., Attarchi, S., Rahnama, M., & Mosalman, S. T. (2021). Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East. Atmosphere, 12(11), 1435. https://doi.org/10.3390/atmos12111435