Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil
Abstract
:1. Introduction
Study Aim and Objectives
2. Materials and Methods
2.1. Case Study
2.2. Climate Data Collection and Processing
2.3. Remote Sensing Data Collection and Processing
3. Results
3.1. Climate Conditions and Spatial Variability
3.2. Remote Sensing and Land Surface Temperature (LST)
4. Discussion
4.1. Meteorological Conditions in Urban Area
4.2. Shadow Radiation Balance
4.3. Land Cover and Urban Geometry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Amorim, M.C.D.C.T.; Dubreuil, V. Intensity of Urban Heat Islands in Tropical and Temperate Climates. Climate 2017, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Roth, M. Review of urban climate research in (sub)tropical regions. Int. J. Clim. 2007, 27, 1859–1873. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C. Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Build. Environ. 2018, 130, 49–61. [Google Scholar] [CrossRef]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The Effect of Urban Density and Vegetation Cover on the Heat Island of a Subtropical City. J. Appl. Meteorol. Clim. 2018, 57, 2531–2550. [Google Scholar] [CrossRef]
- Lu, L.; Weng, Q.; Xiao, D.; Guo, H.; Li, Q.; Hui, W. Spatiotemporal Variation of Surface Urban Heat Islands in Relation to Land Cover Composition and Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sens. 2020, 12, 2713. [Google Scholar] [CrossRef]
- Marciotto, E.R. Impact of City Verticalization on the Urban Surface Energy Budget: A modeling study. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Ho, J.; Lau, K.; Ng, E. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. 2018, 24, 419–448. [Google Scholar] [CrossRef]
- Emmanuel, R.; Johansson, E. Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Clim. Res. 2006, 30, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Garreau, E.; Berthou, T.; Duplessis, B.; Partenay, V.; Marchio, D. Solar shading and multi-zone thermal simulation: Parsimonious modelling at urban scale. Energy Build. 2021, 249, 111176. [Google Scholar] [CrossRef]
- MeshkinKiya, M.; Paolini, R. Uncertainty of solar radiation in urban canyons propagates to indoor thermo-visual comfort. Sol. Energy 2021, 221, 545–558. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Li, Q.; Zhang, T.; Yang, L.; Liu, J. Investigation on the distribution patterns and predictive model of solar radiation in urban street canyons with panorama images. Sustain. Cities Soc. 2021, 75, 103275. [Google Scholar] [CrossRef]
- Gong, F.-Y.; Zeng, Z.-C.; Ng, E.Y.Y.; Norford, L.K. Spatiotemporal patterns of street-level solar radiation estimated using Google Street View in a high-density urban environment. Build. Environ. 2019, 148, 547–566. [Google Scholar] [CrossRef]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Nevado, E.; Beckers, B.; Coch, H. Assessing the cooling effect of urban textile shading devices through time-lapse thermography. Sustain. Cities Soc. 2020, 63, 102458. [Google Scholar] [CrossRef]
- Arkon, C.A.; Özkol, Ü. Effect of urban geometry on pedestrian-level wind velocity. Arch. Sci. Rev. 2013, 57, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Giridharan, R.; Lau, S.; Ganesan, S.; Givoni, B. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ. 2007, 42, 3669–3684. [Google Scholar] [CrossRef]
- Deng, J.-Y.; Wong, N.H. Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Meng, C.; Huang, C.; Dou, J.; Li, H.; Cheng, C. Key parameters in urban surface radiation budget and energy balance modeling. Urban Clim. 2021, 39, 100940. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E. Advanced view factor analysis method for radiation exchange. Int. J. Biometeorol. 2013, 58, 161–178. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Haeger-Eugensson, M.; Holmer, B. Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol. 1999, 19, 975–988. [Google Scholar] [CrossRef]
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealised urban canyons—examples from Freiburg, Germany. Int. J. Biometeorol. 2011, 56, 199–203. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Lee, D.K.; Kim, J.-H.; Oh, K. Improving urban thermal environments by analysing sensible heat flux patterns in zoning districts. Cities 2021, 116, 103276. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0 Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lee, S.; Moon, H. Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects. Sustainability 2018, 10, 4837. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Levermore, G.J. Sky view factor and sunshine factor of urban geometry for urban heat island and renewable energy. Arch. Sci. Rev. 2018, 62, 26–34. [Google Scholar] [CrossRef]
- Aoyagi, T.; Seino, N. A Square Prism Urban Canopy Scheme for the NHM and Its Evaluation on Summer Conditions in the Tokyo Metropolitan Area, Japan. J. Appl. Meteorol. Clim. 2011, 50, 1476–1496. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Clim. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.; Ganesan, S. Nocturnal heat island effect in urban residential developments of Hong Kong. Energy Build. 2005, 37, 964–971. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Yang, L.; Wang, L.; Gao, Z. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett. 2015, 10, 054009. [Google Scholar] [CrossRef]
- Liu, R.; Han, Z.; Wu, J.; Hu, Y.; Li, J. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime. Atmos. Res. 2017, 197, 167–176. [Google Scholar] [CrossRef]
- Nichol, J. Remote Sensing of Urban Heat Islands by Day and Night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- Cui, W.; Chui, T.F.M. Measurements and simulations of energy fluxes over a high-rise and compact urban area in Hong Kong. Sci. Total Environ. 2021, 765, 142718. [Google Scholar] [CrossRef]
- Ali-Toudert, F. Exploration of the thermal behaviour and energy balance of urban canyons in relation to their geometrical and constructive properties. Build. Environ. 2021, 188, 107466. [Google Scholar] [CrossRef]
- Conejo-Fernández, J.; Cappelletti, F.; Gasparella, A. Including the effect of solar radiation in dynamic indoor thermal comfort indices. Renew. Energy 2021, 165, 151–161. [Google Scholar] [CrossRef]
- Fischereit, J. The simple urban radiation model for estimating mean radiant temperature in idealised street canyons. Urban Clim. 2021, 35, 100694. [Google Scholar] [CrossRef]
- Carvalho, H.D.; Chang, B.; McInnes, K.J.; Heilman, J.L.; Wherley, B.; Aitkenhead-Peterson, J.A. Energy balance and temperature regime of different materials used in urban landscaping. Urban Clim. 2021, 37, 100854. [Google Scholar] [CrossRef]
- Ge, X.; Mauree, D.; Castello, R.; Scartezzini, J.-L. Spatio-Temporal Relationship between Land Cover and Land Surface Temperature in Urban Areas: A Case Study in Geneva and Paris. ISPRS Int. J. Geo-Inf. 2020, 9, 593. [Google Scholar] [CrossRef]
- Fernández, M.E.; Picone, N.; Gentili, J.O.; Campo, A.M. Analysis of the Urban Energy Balance in Bahía Blanca (Argentina). Urban Clim. 2021, 37, 100856. [Google Scholar] [CrossRef]
- Wetherley, E.B.; Roberts, D.A.; Tague, C.L.; Jones, C.; Quattrochi, D.A.; McFadden, J.P. Remote sensing and energy balance modeling of urban climate variability across a semi-arid megacity. Urban Clim. 2021, 35, 100757. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Volo, T.J.; Vivoni, E.R.; Jenerette, G.D.; Ruddell, B.L. Seasonal dynamics of a suburban energy balance in Phoenix, Arizona. Int. J. Clim. 2014, 34, 3863–3880. [Google Scholar] [CrossRef]
- Kawai, T.; Kanda, M. Urban Energy Balance Obtained from the Comprehensive Outdoor Scale Model Experiment. Part I: Basic Features of the Surface Energy Balance. J. Appl. Meteorol. Clim. 2010, 49, 1341–1359. [Google Scholar] [CrossRef]
- Kejna, M.; Uscka-Kowalkowska, J.; Kejna, P. The influence of cloudiness and atmospheric circulation on radiation balance and its components. Theor. Appl. Clim. 2021, 144, 823–838. [Google Scholar] [CrossRef]
- Nichol, J.E.; Fung, W.Y.; Lam, K.-S.; Wong, M.S. Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.A.; Srivanit, M.; Weng, Q. A Review on Remote Sensing of Urban Heat and Cool Islands. Land 2017, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Schlickmann, M. Do Arraial do Bom Sucesso a Balneário Camboriú: Mais de 50 anos de História, 1st ed.; Fundação Cultural de Balneário Camboriú: Balneário Camboriú, Brazil, 2016; 83p. [Google Scholar]
- IBGE. Available online: https://cidades.ibge.gov.br/brasil/sc/balneario-camboriu/panorama (accessed on 17 August 2021).
- Wollmann, C.A.; Gobo, J.P.A.; Chiquetto, J.P.; Shooshtarian, S.; Rotili Junior, D.H. Balneário Camboriú: The “Brazilian Dubai” and the Greatest Verticalization Process in the Southern Hemisphere. Bulletin of International Association for Urban Climate. 2020. Issue No. 78. Available online: http://www.urban-climate.org/wp-content/uploads/newsletter/IAUC078.pdf (accessed on 15 September 2021).
- Campos, G.D.A.C.; Júnior, E.F.C. Sombreamento causado pelos edifícios altos em curitiba. Cad. Arquitetura Urban 2016, 22, 26. [Google Scholar] [CrossRef] [Green Version]
- Taha, H.; Levinson, R.; Mohegh, A.; Gilbert, H.; Ban-Weiss, G.; Chen, S. Air-Temperature Response to Neighborhood-Scale Variations in Albedo and Canopy Cover in the Real World: Fine-Resolution Meteorological Modeling and Mobile Temperature Observations in the Los Angeles Climate Archipelago. Climate 2018, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-Y.; Brazel, A.J.; Chow, W.; Hedquist, B.C.; Prashad, L. Desert heat island study in winter by mobile transect and remote sensing techniques. Theor. Appl. Clim. 2009, 98, 323–335. [Google Scholar] [CrossRef]
- Rodríguez, L.R.; Ramos, J.S.; de la Flor, F.J.S.; Domínguez, S. Álvarez Analyzing the urban heat Island: Comprehensive methodology for data gathering and optimal design of mobile transects. Sustain. Cities Soc. 2020, 55, 102027. [Google Scholar] [CrossRef]
- Hoppe, I.L.; Iensse, A.C.; Simioni, J.P.D.; Wollmann, C.A. Comparação entre um abrigo meteorológico de baixo custo e a estação meteorológica oficial no INMET, em Santa Maria (RS). Ciência Nat. 2015, 37, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Baratto, J.; Galvani, E.; Wollmann, C.A. Calibração e desempenho do abrigo meteorológico de baixo custo em condições de campo. Rev. Bras. Clim. 2020, 26, 441–456. [Google Scholar] [CrossRef]
- Wollmann, C.A.; Galvani, E. Zoneamento Agroclimático Aportes Teóricos, Metodológicos e Técnicas para o Estudo das Roseiras (Rosaceae spp.) no Rio Grande do Sul, 1st ed.; Buqui Livros Digitais: Porto Alegre, Brazil, 2014; Volume 1, 149p. [Google Scholar]
- Boer, E.P.; de Beurs, K.M.; Hartkamp, A.D. Kriging and thin plate splines for mapping climate variables. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 146–154. [Google Scholar] [CrossRef]
- Aalto, J.; Pirinen, P.; Heikkinen, J.; Venäläinen, A. Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models. Theor. Appl. Clim. 2013, 112, 99–111. [Google Scholar] [CrossRef]
- USGS. Available online: http://landsat.usgs.gov//l8handbook_section1.php (accessed on 15 August 2021).
- USGS. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2-level-1-data?qt-science_support_page_related_con=1#qtscience_support_page_related_con (accessed on 15 August 2021).
- USGS. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2?qtscience_support_page_related_con=1#qt-science_support_page_related_con (accessed on 15 August 2021).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Pereira, E.B.; Martins, F.R.; Gonçalves, A.R.; Costa, R.S.; De Lima, F.J.L.; Rüther, R.; Abreu, S.D.L.; Tiepolo, G.M.; Pereira, S.V.; De Souza, J.G. Atlas Brasileiro de Energia Solar. 2017, Volume 80. Available online: https://cenariossolar.editorabrasilenergia.com.br/wp-content/uploads/sites/8/2020/11/Atlas_Brasileiro_Energia_Solar_2a_Edicao_compressed.pdf (accessed on 15 August 2021).
- Tiba, C.; Fraidenraich, N.; Moszkowicz, M.; Cavalcant, E.S.C.; Lyra, F.J.M.; Nogueira, A.M.B.; Gallegos, H.G.; Araújo, D.C.N.; Mamede, F.J.S.; Pinho Júnior, A.F.; et al. Atlas Solarimétrico do Brasil: Banco de Dados Solarimétricos; Editora Universitária da UFPE: Recife, Brazil, 2000; 111p, Available online: http://www.cresesb.cepel.br/publicacoes/download/atlas_solarimetrico_do_brasil_2000.pdf (accessed on 13 October 2021).
- Sartori, M.G.B. Vento Norte, 1st ed.; Palotti: Santa Maria, Brazil, 2016; 256p. [Google Scholar]
- Khan, H.S.; Santamouris, M.; Kassomenos, P.; Paolini, R.; Caccetta, P.; Petrou, I. Spatiotemporal variation in urban overheating magnitude and its association with synoptic air-masses in a coastal city. Sci. Rep. 2021, 11, 6762. [Google Scholar] [CrossRef]
- Founda, D.; Pierros, F.; Petrakis, M.; Zerefos, C. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmos. Res. 2015, 161–162, 1–13. [Google Scholar] [CrossRef]
- Ghadban, M.; Baayoun, A.; Lakkis, I.; Najem, S.; Saliba, N.A.; Shihadeh, A. A novel method to improve temperature forecast in data-scarce urban environments with application to the Urban Heat Island in Beirut. Urban Clim. 2020, 33, 100648. [Google Scholar] [CrossRef]
- Shafaghat, A.; Manteghi, G.; Keyvanfar, A.; Bin Lamit, H.; Saito, K.; Ossen, D.R. Street Geometry Factors Influence Urban Microclimate in Tropical Coastal Cities: A Review. Environ. Clim. Technol. 2016, 17, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Iping, A.; Kidston-Lattari, J.; Simpson-Young, A.; Duncan, E.; McManus, P. (Re)presenting urban heat islands in Australian cities: A study of media reporting and implications for urban heat and climate change debates. Urban Clim. 2019, 27, 420–429. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Melas, D. Study of the urban heat island in a coastal Mediterranean City: The case study of Thessaloniki, Greece. Atmos. Res. 2012, 118, 103–120. [Google Scholar] [CrossRef]
- Mandelmilch, M.; Ferenz, M.; Mandelmilch, N.; Potchter, O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere 2020, 11, 963. [Google Scholar] [CrossRef]
- Song, X.; Liu, J.; Zhao, Y. Effect of design factors on the thermal environment in the waterfront area. Procedia Eng. 2017, 205, 2677–2682. [Google Scholar] [CrossRef]
- Lan, H.; Lau, K.K.-L.; Shi, Y.; Ren, C. Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustain. Cities Soc. 2021, 74, 103172. [Google Scholar] [CrossRef]
- Daramola, M.T.; Balogun, I.A. Local climate zone classification of surface energy flux distribution within an urban area of a hot-humid tropical city. Urban Clim. 2019, 29, 100504. [Google Scholar] [CrossRef]
- Paolini, R.; Mainini, A.G.; Poli, T.; Vercesi, L. Assessment of Thermal Stress in a Street Canyon in Pedestrian Area with or without Canopy Shading. Energy Procedia 2014, 48, 1570–1575. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Yahia, M.W. Wind comfort and solar access in a coastal development in Malmö, Sweden. Urban Clim. 2020, 33, 100645. [Google Scholar] [CrossRef]
- Barbosa, G.S.; Drach, P.R.C.; Corbella, O.D. Intraurban Temperature Variations: Urban Morphologies of the Densification Process of Copacabana Neighborhood, Brazil. Climate 2019, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Firdausah, A.M.; Wonorahardjo, S. Typology Study of Urban Canyon in Residential Area and The Quality of Its Thermal Environment. IOP Conf. Ser. Earth Environ. Sci. 2018, 152, 012025. [Google Scholar] [CrossRef]
- Dantas, D.; Barbosa, G.P.; Cunha, E.G.S.; Souza, M.J.H.; Souza, C.M.; Davidson, E.A.; And Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. Available online: https://www.nature.com/articles/nature04514.pdf (accessed on 15 August 2021).
- Saaroni, H.; Ziv, B. The impact of a small lake on heat stress in a Mediterranean urban park: The case of Tel Aviv, Israel. Int. J. Biometeorol. 2003, 47, 156–165. [Google Scholar] [CrossRef]
- Gupta, N.; Mathew, A.; Khandelwal, S. Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. Egypt. J. Remote Sens. Space Sci. 2019, 22, 81–93. [Google Scholar] [CrossRef]
- Syafii, N.I.; Ichinose, M.; Wong, N.H.; Kumakura, E.; Jusuf, S.K.; Chigusa, K. Experimental Study on the Influence of Urban Water Body on Thermal Environment at Outdoor Scale Model. Procedia Eng. 2016, 169, 191–198. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Guo, G. The cooling effect of water landscape in high-density urban built-up area a case study of the center urban district of guangzhou. In Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 394–400. [Google Scholar]
- Wong, M.S.; Nichol, J.E.; To, P.H.; Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C. Effects of urban and landscape elements on air temperature in a high-density subtropical city. Build. Environ. 2019, 164, 106362. [Google Scholar] [CrossRef]
- Shih, W.-Y.; Ahmad, S.; Chen, Y.C.; Lin, T.-P.; Mabon, L. Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustain. Cities Soc. 2020, 62, 102415. [Google Scholar] [CrossRef]
- Takkanon, P.; Chantarangul, P. Effects of urban geometry and green area on thermal condition of urban street canyons in Bangkok. Arch. Sci. Rev. 2019, 62, 35–46. [Google Scholar] [CrossRef]
- Ha, J.; Choi, Y.; Lee, S.; Oh, K. Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach. Int. J. Environ. Res. Public Health 2020, 17, 421. [Google Scholar] [CrossRef] [Green Version]
- Maheng, D.; Ducton, I.; Lauwaet, D.; Zevenbergen, C.; Pathirana, A. The Sensitivity of Urban Heat Island to Urban Green Space—A Model-Based Study of City of Colombo, Sri Lanka. Atmosphere 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.K.; Jim, C. Differential cooling effects of landscape parameters in humid-subtropical urban parks. Landsc. Urban Plan. 2019, 192, 103651. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.-D.; Shi, Y. Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Q.; Dai, W.; Ding, R. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation. Rev. Sci. Instrum. 2016, 87, 84503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spronken-Smith, R.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a high-latitude city. Int. J. Clim. 2016, 36, 2379–2395. [Google Scholar] [CrossRef] [Green Version]
- Shashua-Bar, L.; Hoffman, M. Vegetation as a climatic component in the design of an urban street. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Anjos, M.; Lopes, A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability 2017, 9, 1379. [Google Scholar] [CrossRef] [Green Version]
- Gartland, L.M. Heat Islands: Understanding and Mitigation in Urban Areas; Earthscan: London, UK, 2012; 192p. [Google Scholar]
- Clay, R.; Guan, H. The urban-parkland nocturnal temperature interface. Urban Clim. 2020, 31, 100585. [Google Scholar] [CrossRef]
- Wang, R.; Murayama, Y. Geo-simulation of land use/cover scenarios and impacts on land surface temperature in Sapporo, Japan. Sustain. Cities Soc. 2020, 63, 102432. [Google Scholar] [CrossRef]
- Mehrotra, S.; Bardhan, R.; Ramamritham, K. Diurnal thermal diversity in heterogeneous built area: Mumbai, India. Urban Clim. 2020, 32, 100627. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liao, Y.-J.; Yao, C.-K.; Honjo, T.; Wang, C.-K.; Lin, T.-P. The application of a high-density street-level air temperature observation network (HiSAN): The relationship between air temperature, urban development, and geographic features. Sci. Total Environ. 2019, 685, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
Month | JAN | FEV | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEZ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shortwave (Wh/m2·day) | 4290 | 4308 | 3794 | 3414 | 3155 | 2586 | 2520 | 2952 | 2043 | 2229 | 3805 | 4188 |
Longwave (Wh/m2·day) | 5000 | 4722 | 4444 | 3611 | 3333 | 2777 | 2777 | 3333 | 3611 | 4444 | 4722 | 5000 |
Transect | South to North | North to South | Transect | South to North | North to South | ||||
---|---|---|---|---|---|---|---|---|---|
Time | Ta (°C) | RH (%) | Ta (°C) | RH (%) | Time | Ta (°C) | RH (%) | Ta (°C) | RH (%) |
06:00:00 | 16.9 | 89.6 | 18.5 | 82.7 | 06:09:00 | 16.6 | 91.8 | 16.9 | 89.8 |
06:00:30 | 16.9 | 89.1 | 18.3 | 82.2 | 06:09:30 | 16.6 | 91.8 | 16.9 | 89.8 |
06:01:00 | 16.8 | 89.0 | 18.1 | 83.0 | 06:10:00 | 16.7 | 91.8 | 16.9 | 89.9 |
06:01:30 | 16.7 | 89.1 | 17.8 | 84.5 | 06:10:30 | 16.7 | 91.8 | 16.8 | 90.0 |
06:02:00 | 16.7 | 89.5 | 17.5 | 85.4 | 06:11:00 | 16.7 | 91.8 | 16.8 | 90.2 |
06:02:30 | 16.6 | 89.8 | 17.3 | 85.9 | 06:11:30 | 16.7 | 91.7 | 16.8 | 90.1 |
06:03:00 | 16.6 | 90.0 | 17.1 | 87.0 | 06:12:00 | 16.7 | 91.7 | 16.8 | 90.1 |
06:03:30 | 16.5 | 90.0 | 17.0 | 88.1 | 06:12:30 | 16.7 | 91.7 | 16.7 | 90.1 |
06:04:00 | 16.5 | 90.4 | 17.0 | 88.6 | 06:13:00 | 16.7 | 91.6 | 16.6 | 89.5 |
06:04:30 | 16.5 | 90.5 | 16.9 | 88.8 | 06:13:30 | 16.6 | 91.5 | 16.5 | 89.1 |
06:05:00 | 16.5 | 91.2 | 16.9 | 89.1 | 06:14:00 | 16.5 | 91.1 | 16.4 | 89.7 |
06:05:30 | 16.5 | 91.6 | 16.9 | 89.4 | 06:14:30 | 16.5 | 90.9 | 16.3 | 90.0 |
06:06:00 | 16.5 | 91.7 | 17.0 | 89.7 | 06:15:00 | 16.4 | 91.1 | 16.3 | 90.5 |
06:06:30 | 16.5 | 91.8 | 17.0 | 89.6 | 06:15:30 | 16.4 | 91.2 | 16.2 | 90.8 |
06:07:00 | 16.6 | 91.7 | 17.0 | 89.7 | 06:16:00 | 16.3 | 91.1 | 16.2 | 91.1 |
06:07:30 | 16.6 | 91.9 | 16.9 | 89.7 | 06:16:30 | 16.3 | 91.1 | 16.3 | 90.0 |
06:08:00 | 16.6 | 91.9 | 16.9 | 89.6 | 06:17:00 | 16.3 | 91.1 | 16.3 | 90.5 |
06:08:30 | 16.6 | 91.7 | 16.9 | 89.6 | 06:17:30 | 16.3 | 91.1 | 16.3 | 90.8 |
Points | Ta (°C) | LST (°C) | RH (%) |
---|---|---|---|
Barra Sul | 15.4 | 22.0 | 85 |
Central Beach | 15.7 | 21.2 | 90 |
Barra Norte | 15.5 | 19.0 | 90 |
Brasil Ave. | 17.5 | 21.2 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wollmann, C.A.; Hoppe, I.L.; Gobo, J.P.A.; Simioni, J.P.D.; Costa, I.T.; Baratto, J.; Shooshtarian, S. Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil. Atmosphere 2021, 12, 1453. https://doi.org/10.3390/atmos12111453
Wollmann CA, Hoppe IL, Gobo JPA, Simioni JPD, Costa IT, Baratto J, Shooshtarian S. Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil. Atmosphere. 2021; 12(11):1453. https://doi.org/10.3390/atmos12111453
Chicago/Turabian StyleWollmann, Cássio Arthur, Ismael Luiz Hoppe, João Paulo Assis Gobo, João Paulo Delapasse Simioni, Iago Turba Costa, Jakeline Baratto, and Salman Shooshtarian. 2021. "Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil" Atmosphere 12, no. 11: 1453. https://doi.org/10.3390/atmos12111453
APA StyleWollmann, C. A., Hoppe, I. L., Gobo, J. P. A., Simioni, J. P. D., Costa, I. T., Baratto, J., & Shooshtarian, S. (2021). Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil. Atmosphere, 12(11), 1453. https://doi.org/10.3390/atmos12111453