Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Local Climate Zones (LCZs) Approach
2.3. Data Set
2.3.1. Landsat 8 Images
2.3.2. Worldview Image
2.3.3. Support Information
2.4. Methodology
2.4.1. Land Surface Temperature
2.4.2. Classification of Building Roofs
- -
- “Clay Tile Roofs”, representing the typical coverages of the residential buildings;
- -
- “Bright Grey Roofs”, as aluminum roofs, metal roofs, etc.;
- -
- “Medium/Dark Grey Roofs”, as dark bituminous roofs, etc.
2.4.3. Surface Albedo
2.4.4. Surface Temperature of Building Roofs
2.4.5. Estimation of UHI Mitigation for LCZs
3. Results and Discussion
3.1. SUHI Analysis
3.2. Local Climate Zones Identification
3.3. WV3 Image Classification
3.4. Surface Albedo Values and Building Roof Surface Temperature Calculation
3.5. Solar Reflective Materials and SUHI Mitigation Actions
- the current values of albedo and surface temperature of building roofs;
- the values of albedo and surface temperature of building roofs after the application on field of solar reflective materials (“improved” scenario);
- the values of albedo and surface temperature of building roofs after a few years from the application of solar reflective materials (“aged” scenario).
3.6. UHI Mitigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin Symbols | |
a | Coefficient |
c | light speed (m/s) |
c2 | constant (equal to h*c/s) |
h | Planck’s constant |
he | external heat transfer surface coefficient (W/(m2K)) |
I | solar irradiance (W/m2) |
s | Boltzmann’s constant |
Taged | mean building temperature in the aged scenario (°C) |
Tb | brightness temperature (°C) |
Tcurrent | current mean building temperature (°C) |
Te,a | external air temperature (°C) |
Te,s | external surface temperature (°C) |
Ti,a | internal air temperature (°C) |
Timproved | mean building temperature in the improved scenario (°C) |
Tm | mean daily temperature (°C) |
Tmax | maximum daily temperature (°C) |
Tmax med | maximum mean daily temperature (monthly average) (°C) |
Tmin | minimum daily temperature (°C) |
Tmin,m | minimum temperature (monthly average) (°C) |
U | thermal transmittance |
Umed | mean daily/monthly relative humidity (W/(m2K)) |
Vloc | local wind speed (m/s) |
z0 | roughness |
Greek and Mixed Symbols | |
ε | surface emissivity |
λ | wavelength of the emitted radiance |
ρNIR | near infrared band reflectance |
ρRED | red band reflectance |
Acronyms | |
ALB | surface albedo |
ALBaged | surface albedo in the aged scenario |
ALBcurrent | current surface albedo |
ALBimproved | surface albedo in the improved scenario |
ALBIN | Albedo Increase |
ALBINaged | Albedo value in the aged scenario |
ALBINimproved | Albedo value in the improved scenario |
ATD | Air Temperature Decrease |
ATDaged | Air Temperature Decrease in the aged scenario |
ATDimproved | Air Temperature Decrease in the improved scenario |
BOA | Bottom of the Atmosphere |
CET | Central European Time |
DN | Digital Number |
FVC | Fraction Vegetation Index |
IR | InfraRed range |
LCZ | Local Climate Zone |
LST | Land Surface Temperature |
NDVI | Normalized Difference Vegetation Index |
NIR | Near InfraRed range |
OLI | Operational Land Imager |
RGB | Red-Green-Blue |
SUHI | Surface Urban Heat Island |
SWIR | Short Wave InfraRed range |
TIR | Thermal-Infrared range |
TIRS | Thermal-InfraRed Sensor |
UHI | Urban Heat Island |
USGS | United States Geological Survey |
VIS | Visible range |
VNIR | Visible-Near InfraRed range |
WV3 | Worldview3 |
References
- United Nations. World urbanization prospects. World Urban Prospect Highlights 2014, 28. Available online: http://www.indiaenvironmentportal.org.in/content/396157/world-urbanization-prospects-2014-revision-highlights/ (accessed on 17 May 2021).
- Coopers, P.W. Five Megatrends and Their Implications for Global Defence & Security. Ausgabe November, S, 2016, 1. 2016. Available online: https://www.readkong.com/page/five-megatrends-and-their-implications-for-global-defense-3664387 (accessed on 17 May 2021).
- Nsemo, A.D. Health Problems Associated With Urbanization And Industrialization. Int. J. Innov. Res. Adv. Stud. 2019, 6, 149–157. [Google Scholar]
- Wang, L.; Kanehl, P. Influences of watershed urbanization and instream habitat on macroinvertebrates in cold water streams. J. Am. Water Resour. Assoc. 2003, 39, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Silva, R.; Carvalho, A.C.; Carvalho, D.; Rocha, A. Study of Urban Heat Islands Using Different Urban Canopy Models and Identification Methods. Atmosphere 2021, 12, 521. [Google Scholar] [CrossRef]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in urban climate modelling at local scale: Urban heat island mitigation and building cooling demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Stud. Res. 2011, 2011, 497524. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Zinzi, M. Cool Materials. In Energy Performance of Buildings; Springer: Berlin/Heidelberg, Germany, 2016; pp. 415–436. [Google Scholar]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [Google Scholar] [CrossRef]
- Yang, C.; Yan, F.; Zhang, S. Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. J. Environ. Manag. 2020, 265, 110563. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, M.; Jia, G.; Zhao, C.; Zhen, X.; Xu, Y. Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS J. Photogramm. Remote Sens. 2019, 156, 160–168. [Google Scholar] [CrossRef]
- Analitis, A.; Michelozzi, P.; D’Ippoliti, D.; De’Donato, F.; Menne, B.; Matthies, F.; Atkinson, R.W.; Iñiguez, C.; Basagaña, X.; Schneider, A.; et al. Effects of heat waves on mortality: Effect modification and confounding by air pollutants. Epidemiology 2014, 25, 15–22. [Google Scholar] [CrossRef]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Bhargava, A.; Lakmini, S.; Bhargava, S. Urban Heat Island Effect: It’s relevance in urban planning. J. Biodivers. Endanger. Species 2017, 5, 2. [Google Scholar]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Pomerantz, M.; Akbari, H.; Berdahl, P.; Konopacki, S.J.; Taha, H.; Rosenfeld, A.H. Reflective surfaces for cooler buildings and cities. Philos. Mag. B 1999, 79, 1457–1476. [Google Scholar] [CrossRef]
- Bretz, S.; Akbari, H.; Rosenfeld, A.; Konopacki, S.; Flux, E.; Hegemann, D.; Akbari, H.; Konopacki, S. Petty. FluxIntensity.pdf. Lawrence Berkeley Natl. Lab. 1998, 32, 201–216. [Google Scholar]
- Pisello, A.L. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 2017, 144, 660–680. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The long-term effect of increasing the albedo of urban areas. Environ. Res. Lett. 2012, 7, 24004. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetali, S. Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Price, J.C. Assessment of the urban heat island effect through the use of satellite data. Mon. Weather Rev. 1979, 107, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.I.; Grishchenko, M.Y.; Wouters, H. Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling. Geogr. Environ. Sustain. 2019, 12, 74–95. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Ye, C.; Wang, M.; Li, J. Derivation of the characteristics of the Surface Urban Heat Island in the Greater Toronto area using thermal infrared remote sensing. Remote Sens. Lett. 2017, 8, 637–646. [Google Scholar] [CrossRef]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm. Remote Sens. Environ. 2004, 91, 304–319. [Google Scholar] [CrossRef]
- Kuester, M. Radiometric Use of Worldview-3 Imagery; Digital Globe: Longmont, CO, USA, 2016. [Google Scholar]
- Taha, H.; Akbari, H.; Rosenfeld, A.; Huang, J. Residential cooling loads and the urban heat island—The effects of albedo. Build. Environ. 1988, 23, 271–283. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Costanzini, S.; Ferrari, C.; Despini, F.; Muscio, A. Standard test methods for rating of solar reflectance of built-up surfaces and potential use of satellite remote sensors. Energies 2021, 14, 6626. [Google Scholar] [CrossRef]
- Brest, C.L.; Goward, S.N. Deriving surface albedo measurements from narrow band satellite data. Int. J. Remote Sens. 1987, 8, 351–367. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bonafoni, S.; Anniballe, R.; Presciutti, A.; Gioli, B.; Magliulo, V. Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Sol. Energy 2015, 113, 281–294. [Google Scholar] [CrossRef]
- Standard ISO 13790; Energy Performance of Buildings—Calculationof Energy Use for Space Heating and Cooling. ISO: Geneva, Switzerland, 2008.
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Sleiman, M.; Kirchstetter, T.; Berdahl, P.; Gilbert, H.; Chen, S.; Levinson, R.; Destaillats, H.; Akbari, H. Aging of Cool Roof Materials: New Accelerated Laboratory Test Method for Mimicking the Change in Solar Reflectance. In Proceedings of the Third International Conference on Countermeasures to Urban Heat Island, Venice, Italy, 13–15 October 2014; pp. 1571–1582. [Google Scholar]
- Paolini, R.; Sleiman, M.; Terraneo, G.; Poli, T.; Zinzi, M.; Levinson, R.; Destaillats, H. Solar spectral reflectance of building envelope materials after natural exposure in Rome and Milano, and after accelerated aging. In Proceedings of the Third International Conference on Countermeasures to Urban Heat Island, Venice, Italy, 13–15 October 2014; pp. 498–509. [Google Scholar]
- Ferrari, C.; Gholizadeh Touchaei, A.; Sleiman, M.; Libbra, A.; Muscio, A.; Siligardi, C.; Akbari, H. Effect of aging processes on solar reflectivity of clay roof tiles. Adv. Build. Energy Res. 2014, 8, 28–40. [Google Scholar] [CrossRef]
- Barbieri, T.; Despini, F.; Teggi, S. A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability 2018, 10, 1678. [Google Scholar] [CrossRef] [Green Version]
- Costanzini, S.; Teggi, S.; Bigi, A.; Ghermandi, G.; Filippini, T.; Malagoli, C.; Nannini, R.; Vinceti, M. Atmospheric dispersion modelling and spatial analysis to evaluate population exposure to pesticides from farming processes. Atmosphere 2018, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Caserini, S.; Giani, P.; Cacciamani, C.; Ozgen, S.; Lonati, G. Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: Historical trend and future projections. Atmos. Res. 2017, 184, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Bigi, A.; Ghermandi, G. Long-term trend and variability of atmospheric PM 10 concentration in the Po Valley. Atmos. Chem. Phys. 2014, 14, 4895–4907. [Google Scholar] [CrossRef] [Green Version]
- Lombroso, L.; Quattrocchi, S. L’osservatorio di Modena: 180 Anni di Misure Meteoclimatiche; Societa Meteorologica Subalpina: Moncalieri, Italy, 2008; p. 512. [Google Scholar]
- Lombroso, L.; Costanzini, S.; Despini, F.; Teggi, S. Il clima della città di Modena: Analisi delle serie storiche dell’Osservatorio Geofisico. In Proceedings of the AISAM Conference, Naples, Italy, 24–27 September 2019. [Google Scholar]
- Renc, A.; Łupikasza, E.; Błaszczyk, M. Spatial structure of the Surface Urban Heat Island in summer based on Landsat 8 imagery in the Górnośląsko–Zagłębiowska Metropolis, Southern Poland. No. EMS2021-100. Copernicus Meetings. 2021. Available online: https://doi.org/10.5194/ems2021-100 (accessed on 17 May 2021).
- Keeratikasikorn, C.; Bonafoni, S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sens. 2018, 10, 440. [Google Scholar] [CrossRef]
- Iabchoon, S.; Wongsai, S.; Chankon, K. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery. J. Appl. Remote Sens. 2017, 11, 46015. [Google Scholar] [CrossRef]
- Despini, F.; Ferrari, C.; Santunione, G.; Tommasone, S.; Muscio, A.; Teggi, S. Urban surfaces analysis with remote sensing data for the evaluation of UHI mitigation scenarios. Urban Clim. 2021, 35, 100761. [Google Scholar] [CrossRef]
- Samsudin, S.H.; Shafri, H.Z.M.; Hamedianfar, A. Development of spectral indices for roofing material condition status detection using field spectroscopy and WorldView-3 data. J. Appl. Remote Sens. 2016, 10, 25021. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T.; Ivanova, S. Enhancement of albedo for solar energy gain with particular emphasis on overcast skies. Energies 2018, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.H.; Carlson, J.D.; Golden, J.S.; Bryan, H. An integrated empirical and modeling methodology for analyzing solar reflective roof technologies on commercial buildings. Build. Environ. 2010, 45, 453–460. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Kendall, A. Field measurement of albedo for different land cover materials and effects on thermal performance. Build. Environ. 2013, 59, 536–546. [Google Scholar] [CrossRef]
- Soc, A.; Mat, N.; Lombroso, L.; Costanzini, S.; Despini, F.; Teggi, S. Annuario 2020 dell’ Osservatorio Geofisico di Modena: Le osservazioni continuano e l’Osservatorio è nominato Centennial Observing Station WMO. Atti Soc. Nat. Mat. Modena 2021, 152. Available online: https://www.socnatmatmo.unimore.it/download/Atti2021.pdf#page=5 (accessed on 17 May 2021).
- Congedo, L. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Weng, Q.H.; Lu, D.S.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Rajeshwari, A.; Mani, N.D. Estimation of land surface temperature of Dindigul district using Landsat 8 data. Int. J. Res. Eng. Technol. 2014, 3, 122–126. [Google Scholar]
- Teggi, S.; Despini, F. Estimation of subpixel MODIS water temperature near coastlines using the SWTI algorithm. Remote Sens. Environ. 2014, 142, 122–130. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated subpixel surface water mapping from heterogeneous urban environments using Landsat 8 OLI imagery. Remote Sens. 2016, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Loghmari, M.A.; Naceur, M.S.; Boussema, M.R. Mixed pixel decomposition of satellite images based on source separation method. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2002; Volume 2, pp. 914–916. [Google Scholar]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Rajasekar, U.; Weng, Q. Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM+ imagery. Int. J. Remote Sens. 2009, 30, 3531–3548. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Wei, W.; Chen, X.; Ma, A. Object-oriented information extraction and application in high-resolution remote sensing image. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’05; IEEE: Piscataway, NJ, USA, 2005; Volume 6, pp. 3803–3806. [Google Scholar]
- Kaplan, S.; Galletti, C.S.; Chow, W.T.L.; Myint, S.W. First order approximation of Broadband Directional Albedo with High Resolution Quickbird Imagery: A case study for arid urban areas. GISci. Remote Sens. 2016, 53, 303–319. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission; McGraw-Hill: New York, NY, USA, 1942. [Google Scholar]
- Mirsadeghi, M.; Costola, D.; Blocken, B.; Hensen, J.L.M. Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Appl. Therm. Eng. 2013, 56, 134–151. [Google Scholar] [CrossRef]
- California Energy Commission. 2016 Building Energy Efficiency Standards for Residential and Nonresidential Buildings. 2015. Available online: http://www.calpipes.org/ULWSiteResources/calpipes/Resources/file/title-24/2016-compliance-manuals/2016_Building_Energy_Efficiency_Standards_CEC-400-2015-037-CMF.pdf (accessed on 14 November 2021).
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Pisello, A.L.; Santamouris, M.; Cotana, F. Active cool roof effect: Impact of cool roofs on cooling system efficiency. Adv. Build. Energy Res. 2013, 7, 209–221. [Google Scholar] [CrossRef]
- Ferrari, C.; Muscio, A.; Siligardi, C.; Manfredini, T. Design of a cool color glaze for solar reflective tile application. Ceram. Int. 2015, 41, 11106–11116. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Berdahl, P.; Wood, K.; Skilton, W.; Petersheim, J. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Sol. Energy Mater. Sol. Cells 2010, 94, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Levinson, R.; Berdahl, P.; Akbari, H.; Miller, W.; Joedicke, I.; Reilly, J.; Suzuki, Y.; Vondran, M. Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Sol. Energy Mater. Sol. Cells 2007, 91, 304–314. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M. White or light colored cool roofing materials. Adv. Dev. Cool Mater. Built Environ. 2013, 2, 33–71. [Google Scholar]
- Hooshangi, H.R.; Akbari, H.; Touchaei, A.G. Measuring solar reflectance of variegated flat roofing materials using quasi-Monte Carlo method. Energy Build. 2016, 114, 234–240. [Google Scholar] [CrossRef]
- Santamouris, M.; Paolini, R.; Haddad, S.; Synnefa, A.; Garshasbi, S.; Hatvani-Kovacs, G.; Gobakis, K.; Yenneti, K.; Vasilakopoulou, K.; Feng, J.; et al. Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related m. Energy Build. 2020, 217, 110002. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Carnielo, E.; Zinzi, M. Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Build. Environ. 2013, 60, 56–65. [Google Scholar] [CrossRef]
- Kyriakodis, G.E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates—Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
Bands | Wavelength (Micrometers) | Resolution (Meters) |
---|---|---|
Band 1—Coastal | 0.43–0.45 | 30 |
Band 2—Blue | 0.45–0.51 | 30 |
Band 3—Green | 0.53–0.59 | 30 |
Band 4—Red | 0.64–0.67 | 30 |
Band 5—Near infrared (NIR) | 0.85–0.88 | 30 |
Band 6—SWIR 1 | 1.57–1.65 | 30 |
Band 7—SWIR 2 | 2.11–2.29 | 30 |
Band 8—Panchromatic | 0.50–0.68 | 15 |
Band 9—Cirrus | 1.36–1.38 | 30 |
Band 10—Thermal Infrared (TIR) | 10.60–11.19 | 100 |
Band 11—Thermal Infrared (TIR) | 11.50–12.51 | 100 |
Daily Weather Conditions | Monthly Averaged Weather Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Day | Tmina (°C) | Tmaxb (°C) | Tmc (°C) | Rhmd (%) | Month | Tmin,m (°C) | Tmax,m (°C) | Tm (°C) | RHm (%) |
2016 | 07/05/2016 | 9.1 | 24.9 | 17.0 | 64.7 | May | 11.7 | 23.9 | 17.8 | 73.8 |
24/06/2016 | 20.3 | 36.1 | 28.2 | 67.5 | June | 16.4 | 29.1 | 22.8 | 70.2 | |
01/07/2016 | 19.1 | 33.4 | 26.3 | 62.1 | July | 19.7 | 33.4 | 26.6 | 63.1 | |
27/08/2016 | 15.3 | 33.7 | 24.5 | 64.5 | August | 17.5 | 31.6 | 24.6 | 66.7 | |
19/09/2016 | 13.6 | 27.8 | 20.7 | 71.3 | September | 15 | 28.5 | 21.8 | 71.6 | |
2017 | 26/05/2017 | 13.5 | 27.7 | 20.6 | 60.4 | May | 12.4 | 25.7 | 19 | 69.8 |
02/06/2017 | 17.4 | 32.4 | 24.9 | 50.8 | June | 18.5 | 32.3 | 25.4 | 60.8 | |
04/07/2017 | 17.3 | 32.9 | 25.1 | 62.5 | July | 18.7 | 33.9 | 26.3 | 55.2 | |
14/08/2017 | 16.4 | 34.2 | 25.3 | 51.2 | August | 19.4 | 34.7 | 27.1 | 54.6 | |
22/09/2017 | 9.9 | 24.1 | 17.0 | 67.9 | September | 13.1 | 24.3 | 18.7 | 75.5 | |
2018 | 20/05/2018 | 11.6 | 25.8 | 18.7 | 69.6 | May | 14.1 | 24.9 | 19.5 | 78 |
21/06/2018 | 18.3 | 33.9 | 26.1 | 60.4 | June | 16.4 | 29.8 | 23.1 | 67.4 | |
23/07/2018 | 18.1 | 33.3 | 25.7 | 62.1 | July | 19.3 | 32.5 | 25.9 | 69.1 | |
17/08/2018 | 16.4 | 33.1 | 24.8 | 60.8 | August | 19.2 | 32.4 | 25.8 | 67.2 | |
09/09/2018 | 15.4 | 30.6 | 23.0 | 70.7 | September | 15 | 27.8 | 21.4 | 72.6 | |
2019 | 23/05/2019 | 12.6 | 26.1 | 19.4 | 72.4 | May | 10.3 | 20.4 | 15.3 | 77.1 |
24/06/2019 | 18 | 33.2 | 25.6 | 66.0 | June | 17.6 | 32.1 | 24.9 | 63.1 | |
19/07/2019 | 17.8 | 32.1 | 25.0 | 69.5 | July | 19 | 32.4 | 25.7 | 68.6 | |
27/08/2019 | 19.3 | 32.7 | 26.0 | 72.9 | August | 19.2 | 32.2 | 25.7 | 71.5 | |
28/09/2019 | 15.1 | 27.2 | 21.2 | 75.2 | September | 14.3 | 26.1 | 20.2 | 78.2 | |
2020 | 25/05/2020 | 11.1 | 29.2 | 20.2 | 50.3 | May | 12.7 | 25.6 | 19.1 | 65.9 |
03/06/2020 | 13.7 | 30.1 | 21.9 | 58.4 | June | 15.9 | 29.4 | 22.7 | 67.5 | |
05/07/2020 | 18.3 | 32.6 | 25.5 | 67.1 | July | 19.1 | 31.9 | 25.5 | 66 | |
06/08/2020 | 17.4 | 30.7 | 24.1 | 68.5 | August | 19.8 | 32 | 25.9 | 70.1 | |
14/09/2020 | 17.7 | 30.3 | 24.0 | 74.3 | September | 15.1 | 27.2 | 21.2 | 75.6 | |
2021 | 28/05/2021 | 12.8 | 26.6 | 19.6 | 56 | May | 11.3 | 23.7 | 17.4 | 54.7 |
13/06/2021 | 34.9 | 18.6 | 26.9 | 43 | June | 17.4 | 31.9 | 24.8 | 45 | |
31/07/2021 | 20.6 | 34.9 | 27.9 | 43 | July | 19.6 | 32.6 | 25.9 | 50.9 | |
09/08/2021 | 16.8 | 34.6 | 25.8 | 33 | August | 18.4 | 31.6 | 25.1 | 45.8 | |
01/09/2021 | 13.8 | 29.6 | 21.3 | 52 | September | 14.6 | 27.4 | 20.6 | 55 |
Bands | Wavelength (Micrometers) | Center Wavelength (Micrometers) | Resolution (Meters) |
---|---|---|---|
Band 1—Coastal | 0.400–0.450 | 0.427 | 1.6 |
Band 2—Blue | 0.450–0.510 | 0.482 | 1.6 |
Band 3—Green | 0.510–0.580 | 0.547 | 1.6 |
Band 4—Yellow | 0.585–0.625 | 0.604 | 1.6 |
Band 5—Red | 0.630–0.690 | 0.660 | 1.6 |
Band 6—Red Edge | 0.705–0.745 | 0.723 | 1.6 |
Band 7—Near-IR1 | 0.770–0.895 | 0.824 | 1.6 |
Band 8—Near-IR2 | 0.860–1.040 | 0.914 | 1.6 |
Municipal Districts | LCZ | Sky View Factor a | Building Surface Fraction b | Impervious Surface Fraction c | Pervious Surface Fraction d | Terrain Roughness Class e |
---|---|---|---|---|---|---|
Carrozzone | 5 | 0.55 | 26% | 35% | 65% | 5 |
Tondo | 5 | 0.60 | 23% | 31% | 69% | 5 |
Tribunale | 5 | 0.62 | 18% | 32% | 68% | 5 |
Cavazzoli | D | 0.97 | 3% | 5% | 95% | 3 |
Coviolo | D | 0.98 | 3% | 5% | 95% | 3 |
LCZ | Building Number | Surface’s Building Area (m2) | Clay Tile Roofs | Bright Grey Roofs | Medium/Dark Grey Roofs |
---|---|---|---|---|---|
Carrozzone | 579 | 329,175 | 272 | 76 | 231 |
Tondo | 439 | 205,884 | 305 | 20 | 114 |
Tribunale | 511 | 168,401 | 366 | 13 | 132 |
Cavazzoli | 399 | 97,572 | 299 | 23 | 77 |
Coviolo | 698 | 148,451 | 522 | 31 | 145 |
LCZ | Albedo Mean | Albedo Median | Albedo Standard Deviation | Building’s Albedo (Mean) |
---|---|---|---|---|
Carrozzone | 0.141 | 0.125 | 0.074 | 0.216 |
Tondo | 0.128 | 0.119 | 0.059 | 0.187 |
Tribunale | 0.126 | 0.120 | 0.052 | 0.185 |
Cavazzoli | 0.134 | 0.132 | 0.032 | 0.176 |
Coviolo | 0.130 | 0.128 | 0.031 | 0.171 |
Classes | New albedo Value (ALBimproved) | Aged Albedo Value (ALBaged) | Description | Reference |
---|---|---|---|---|
Clay Tile Roofs | 0.55 | 0.428 | Colored solar reflective materials | [76,77,78,79,80] |
Bright Grey Roofs | 0.90 | 0.655 | White solar reflective materials | [26,81,82,83] |
Medium/Dark Grey Roofs | 0.90 | 0.655 | White solar reflective materials | [26,81,82,83] |
LCZ | Mean LCZ Albedo ALBcurrent | Mean LCZ Albedo ALBimproved | Mean LCZ Albedo ALBaged | Mean Building Temperatures Tcurrent (°C) | Mean Building Temperatures Timproved (°C) | Mean Building Temperatures Taged (°C) |
---|---|---|---|---|---|---|
Carrozzone | 0.125 | 0.271 | 0.214 | 54.2 | 36.7 | 43.0 |
Tondo | 0.119 | 0.241 | 0.195 | 55.2 | 39.4 | 44.7 |
Tribunale | 0.120 | 0.220 | 0.185 | 55.3 | 39.6 | 44.9 |
Cavazzoli | 0.132 | 0.145 | 0.140 | 55.6 | 40.0 | 45.2 |
Coviolo | 0.128 | 0.142 | 0.138 | 55.8 | 40.0 | 45.2 |
LCZ | ALBINimproved | ALBINaged | ATDimproved (°C) | ATDaged (°C) |
---|---|---|---|---|
Carrozzone | 0.146 | 0.089 | 0.45 | 0.28 |
Tondo | 0.122 | 0.076 | 0.38 | 0.24 |
Tribunale | 0.100 | 0.065 | 0.31 | 0.20 |
Cavazzoli | 0.013 | 0.008 | 0.04 | 0.02 |
Coviolo | 0.014 | 0.010 | 0.04 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanzini, S.; Despini, F.; Beltrami, L.; Fabbi, S.; Muscio, A.; Teggi, S. Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere 2022, 13, 70. https://doi.org/10.3390/atmos13010070
Costanzini S, Despini F, Beltrami L, Fabbi S, Muscio A, Teggi S. Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere. 2022; 13(1):70. https://doi.org/10.3390/atmos13010070
Chicago/Turabian StyleCostanzini, Sofia, Francesca Despini, Leonardo Beltrami, Sara Fabbi, Alberto Muscio, and Sergio Teggi. 2022. "Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials" Atmosphere 13, no. 1: 70. https://doi.org/10.3390/atmos13010070
APA StyleCostanzini, S., Despini, F., Beltrami, L., Fabbi, S., Muscio, A., & Teggi, S. (2022). Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere, 13(1), 70. https://doi.org/10.3390/atmos13010070