Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
Abstract
:1. Introduction
Related Work on ANN and Deep Learning for Ambient Air Pollution Estimation
2. Methodology
2.1. Area of Study and Data Collection
2.2. VAE for Embedded Generative Method
2.3. Embedding Network for the Relationship between EFE and AQI
Algorithm 1: embedded modeling algorithm |
Result: find the relation map ƒ; (,)-initialization; ζ-step size hyperparameter; set error estimation; set algorithm for (,) same with (,); |
Result: embedding of Ψ, ƒ; Generate new AQI values based on the embedding; Ψ: (ƒ: x h) ŷ |
3. Experiment
3.1. Data Expression
3.2. Visualization of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ritchie, H. Urbanization. 2018. Available online: https://ourworldindata.org/urbanization (accessed on 25 December 2021).
- Ganbat, G.; Baik, J.J. Wintertime winds in and around the Ulaanbaatar metropolitan area in the presence of a temperature inversion. Asia-Pac. J. Atmos. Sci. 2016, 52, 309–325. [Google Scholar] [CrossRef]
- Byamba, B.; Ishikawa, M. Municipal Solid Waste Management in Ulaanbaatar, Mongolia: Systems Analysis. Sustainability 2017, 9, 896. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Air Quality Analysis of Ulaanbaatar: Improving Air Quality to Reduce Health Impacts. 2011. Available online: https://openknowledge.worldbank.org/handle/10986/26802 (accessed on 25 December 2021).
- Guttikunda, S.K.; Lodoysamba, S.; Bulgansaikhan, B.; Dashdondog, B. Particulate pollution in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2013, 6, 589–601. [Google Scholar] [CrossRef]
- Luvsan, M.-E.; Shie, R.-H.; Purevdorj, T.; Badarch, L.; Baldorj, B.; Chan, C.-C. The influence of emission sources and meteorological conditions on SO2 pollution in Mongolia. Atmos. Environ. 2012, 61, 542–549. [Google Scholar] [CrossRef]
- Curbing Air Pollution in Mongolia’s Capital, World Bank Report. 2012. Available online: https://www.worldbank.org/en/news/feature/2012/04/25/curbing-air-pollution-in-mongolia-capital (accessed on 25 December 2021).
- Reich, S.; Gomez, D.; Dawidowski, L. Artificial neural network for the identification of unknown air pollution sources. Atmos. Environ. 1999, 33, 3045–3052. [Google Scholar] [CrossRef]
- Moustris, K.P.; Ziomas, I.C.; Paliatsos, A.G. 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water Air Soil Pollut. 2010, 209, 29–43. [Google Scholar] [CrossRef]
- Rahman, N.L.; Muhammad, H.; Latif, M.T.; Suhartono, S. Forecasting of Air Pollution Index with Artificial Neural Network. J. Teknol. 2013, 63, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Azid, A.; Juahir, H.; Toriman, M.E.; Kamarudin, M.K.A.; Saudi, A.S.M.; Hasnam, C.N.C.; Aziz, N.A.A.; Azaman, F.; Latif, M.T.; Zainuddin, S.F.M.; et al. Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: A Case Study in Malaysia. Water Air Soil Pollut. 2014, 225, 2063. [Google Scholar] [CrossRef]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Birgani, Y.T.; Rahmati, M. Air pollution prediction by using an artificial neural network model. Clean Technol. Environ. Policy 2019, 21, 1341–1352. [Google Scholar] [CrossRef]
- Elangasinghe, M.A.; Singhal, N.; Dirks, K.N.; Salmond, J.A. Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5, 696–708. [Google Scholar] [CrossRef] [Green Version]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [Google Scholar] [CrossRef]
- Salami, E.S.; Ehteshami, M. Application of neural networks modeling to environmentally global climate change at San Joaquin Old River Station. Model. Earth Syst. Environ. 2016, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ding, W. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhu, L.; Zhang, M. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. [Google Scholar] [CrossRef]
- Delavar, M.R.; Gholami, A.; Shiran, G.R.; Rashidi, Y.; Nakhaeizadeh, G.R.; Fedra, K.; Hatefi Afshar, S. A Novel Method for Improving Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Tehran. ISPRS Int. J. Geo-Inf. 2019, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Ly, H.-B.; Le, L.M.; Phi, L.V.; Phan, V.-H.; Tran, V.Q.; Pham, B.T.; Le, T.-T.; Derrible, S. Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors 2019, 19, 4941. [Google Scholar] [CrossRef] [Green Version]
- Arnaudo, E.; Farasin, A.; Rossi, C. A Comparative Analysis for Air Quality Estimation from Traffic and Meteorological Data. Appl. Sci. 2020, 10, 4587. [Google Scholar] [CrossRef]
- Lee, M.; Lin, L.; Chen, C.Y. Forecasting Air Quality in Taiwan by Using Machine Learning. Sci. Rep. 2020, 10, 4153. [Google Scholar] [CrossRef]
- Enebish, T.; Chau, K.; Jadamba, B. Meredith Franklin, Predicting ambient PM2.5 concentrations in Ulaanbaatar, Mongolia with machine learning approaches. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 699–708. [Google Scholar] [CrossRef]
- Franklin, M.; Chau, K.; Kalashnikova, O.V.; Garay, M.J.; Enebish, T.; Sorek-Hamer, M. Using Multi-Angle Imaging SpectroRadiometer Aerosol Mixture Properties for Air Quality Assessment in Mongolia. Remote Sens. 2018, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, C.; Mohomed Jabbar, M.; Zaiane, O. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Cai, C.; Yang, T.; Zhou, X. A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization. Big Data Cogn. Comput. 2018, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Olga, F.; Qin, W.; Markus, S.; Pierre, D.; Wan-Jui, L.; Melanie, D. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 25 December 2021).
- Tien, H.D.; Duc, M.N.; Evaggelia, T.; Angel, L.A.; Valerio, P.L.; Frank, J.P.; Wilfried, P.; Nikos, D. Matrix Completion with Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference. arXiv 2018, arXiv:1811.01662. Available online: https://arxiv.org/abs/1811.01662 (accessed on 25 December 2021).
- Do, T.H.; Tsiligianni, E.; Qin, X.; Hofman, J.; La Manna, V.P.; Philips, W.; Deligiannis, N. Graph-Deep-Learning-Based Inference of Fine-Grained Air Quality From Mobile IoT Sensors. IEEE Internet Things J. 2020, 7, 8943–8955. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Hu, Y. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [Google Scholar] [CrossRef] [PubMed]
- Li, L. Geographically Weighted Machine Learning and Downscaling for High-Resolution Spatiotemporal Estimations of Wind Speed. Remote Sens. 2019, 11, 1378. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Franklin, M.; Girguis, M.; Lurmann, F.; Wu, J.; Pavlovic, N.; Breton, C.; Gilliland, F.; Habre, R. Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling. Remote Sens. Environ. 2020, 237, 111584. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, Y.; Wu, J.; Wang, J.; Ge, Y. Encoder-Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4217–4230. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Girguis, M.; Lurmann, F.; Pavlovic, N.; McClure, C.; Franklin, M.; Wu, J.; Oman, L.D.; Breton, C.; Gilliland, F.; et al. Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke. Environ. Int. 2020, 145, 106143. [Google Scholar] [CrossRef] [PubMed]
- Li, L. A Robust Deep Learning Approach for Spatiotemporal Estimation of Satellite AOD and PM2.5. Remote Sens. 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, Q.; Hou, J.; Feng, X.; Karimian, H.; Lin, S. A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN ISPRS Annals of Photogrammetry. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W2, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Wang, T.; Song, G.; Hu, W.; Li, X.; Zhang, Z. Deep Air Learning: Interpolation, Prediction, and Feature Analysis of Fine-Grained Air Quality. IEEE Trans. Knowl. Data Eng. 2018, 30, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. Available online: https://arxiv.org/abs/1312.6114 (accessed on 25 December 2021).
- Seo, J.K.; Kim, K.C.; Jargal, A.; Lee, K.; Harrach, B. A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT. SIAM J. Imaging Sci. 2019, 12, 1275–1295. [Google Scholar] [CrossRef]
- Hyun, C.M.; Baek, S.H.; Lee, M.; Lee, S.M.; Seo, J.K. Deep Learning-Based Solvability of Underdetermined Inverse Problems in Medical Imaging. arXiv 2020, arXiv:2001.01432. Available online: https://arxiv.org/abs/2001.01432 (accessed on 25 December 2021). [CrossRef] [PubMed]
- Tsagaan, M.; Ganbat, B.; Renchin, S.; Khurlee, U.; Ichin, O. A Deep Variational Autoencoder Based Inverse Method for Active. Energy Consumption of Mining Plants and Ball Grinding Circuit Investigation. Int. J. Precis. Eng. Manuf.-Green Technol. 2021. [Google Scholar] [CrossRef]
Fuel Type | Measured Laboratory | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
---|---|---|---|---|---|---|---|---|---|---|
Improved Fuel | Southwest region, Russia | 2.4 | 22.2 | 19.6 | 0.89 | 6374 | 67.63 | 3.81 | 1.83 | 3.68 |
Central Geological Laboratory | 1.9 | 22.7 | 19.8 | 0.87 | 6984 | - | - | - | - | |
Laboratory of Mineral Resources and Petroleum Authority | 2.7 | 23.3 | 19.3 | 0.86 | 6334 | 65.1 | 5.4 | 1.32 | 7.57 | |
Institute of Chemistry and Chemical Technology | 0.8 | 22.9 | 18.68 | 0.89 | 5918 | 63.86 | 3.76 | 1.69 | - | |
National standard MNS 5679:2019 | ≤10 | ≤29 | ≤22 | ≤1.0 | ≤4200 | - | - | - | - | |
Raw Coal | National standard MNS 3818:2011 | 37.5 | 17.5 | 44.8 | 0.38 | 3360 | - | - | - | - |
National standard MNS 6226:2011 | 6 | 28 | 26 | 1.3 | 5500 | - | - | - | - | |
CRRI China | - | - | - | - | - | 67.3 | 4.2 | 0.95 | 17.2 | |
CRRI China | - | - | - | - | - | 69.3 | 3.8 | 3.8 | 3.1 |
Jan | 12 | 11 | 11 | 11 | 12 |
Feb | 1 | 1 | 3 | 4 | 1 |
Mar | 1 | 1 | 31 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldorj, B.; Tsagaan, M.; Sereeter, L.; Bulkhbai, A. Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City. Atmosphere 2022, 13, 71. https://doi.org/10.3390/atmos13010071
Baldorj B, Tsagaan M, Sereeter L, Bulkhbai A. Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City. Atmosphere. 2022; 13(1):71. https://doi.org/10.3390/atmos13010071
Chicago/Turabian StyleBaldorj, Bulgansaikhan, Munkherdene Tsagaan, Lodoysamba Sereeter, and Amanjol Bulkhbai. 2022. "Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City" Atmosphere 13, no. 1: 71. https://doi.org/10.3390/atmos13010071
APA StyleBaldorj, B., Tsagaan, M., Sereeter, L., & Bulkhbai, A. (2022). Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City. Atmosphere, 13(1), 71. https://doi.org/10.3390/atmos13010071