Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia
Abstract
:1. Introduction
2. Case, Data, and Model
2.1. Case Overview
2.2. Data
2.3. Model Introduction
3. Results
3.1. Simulation of Air Parcel Intrusion Trajectories in the Cut-Off Low
- (1)
- The PV of the air parcel at the initial position is greater than 2 PVU, and the specific humidity is smaller than 1 g kg−1 (this ensures that the air parcel came from above the 2-PVU isentropic surface and was located in the stratosphere at the initial time).
- (2)
- Air parcels must cross both the 2-PVU and the 600 hPa surfaces within 4 days (this ensures that the air parcel has experienced a deep intrusion).
- (3)
- Air parcels that cross both the 2-PVU and the 600 hPa surfaces, but not lying within the COL region, are eliminated from this study (this ensures that the deep intrusion of the air parcels was caused by the COL). This study region is defined as a circular area with a radius of 7° zonal distance, and the center point of the COL is defined as being at the center of this circle.
3.2. Simulation of the Sources of Targeted Air Parcels in the Main Region of the Cut-Off Low
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Experiment and Validation of the COL Case
Appendix A.1. Numerical Experiment
Appendix A.2. Validation of the Simulated Characteristic of the COL Case
References
- Kremser, S.; Thomason, L.W.; Hobe, M.V.; Hermann, M.; Deshler, T.; Timmreck, C.; Toohey, M.; Stenke, A.; Schwarz, J.P.; Weigel, R.; et al. Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 2016, 54, 278–335. [Google Scholar] [CrossRef]
- Yu, P.; Toon, O.B.; Bardeen, C.G. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science 2019, 365, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wang, H.Y.; Wang, W.K. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event. Atmosphere 2020, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.I.; Birner, T. The extratropical upper troposphere and lower stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Stohl, A.; Bonasoni, P.; Cristofanelli, P.; Collins, W.; Feichter, J.; Frank, A.; Forster, C.; Gerasopoulos, E.; Gäggeler, H.; James, P.; et al. Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res. Atmos. 2003, 108, D12. [Google Scholar] [CrossRef]
- Pan, L.L.; Bowman, K.P.; Shapiro, M.; Randel, W.J.; Gao, R.S.; Canpos, T.; Davis, C.; Schauffler, S.; Ridley, B.A.; Wei, J.C.; et al. Chemical behavior of the tropopause observed during the Stratosphere-Troposphere Analyses of Regional Transport experiment. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Bowman, K.P.; Atlas, E.L.; Wofsy, S.C.; Zhang, F.; Bresch, J.F.; Ridley, B.A.; Pittman, J.V.; Homeyer, C.R.; Romashkin, P.; et al. The stratosphere-troposphere analyses of regional transport 2008 experiment. Bull. Am. Meteorol. Soc. 2010, 91, 327–342. [Google Scholar] [CrossRef]
- Guo, D.; Su, Y.C.; Shi, C.H.; Xu, J.J.; Powell, A.M. Double core of ozone valley over the Tibetan Plateau and its possible mechanisms. J. Atmos. Sol.-Terr. Phys. 2015, 130–131, 127–131. [Google Scholar] [CrossRef]
- Guo, D.; Su, Y.C.; Zhou, X.J.; Xu, J.J.; Shi, C.H.; Liu, Y.; Li, W.L.; Li, Z.K. Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets. J. Meteorol. Res. 2017, 31, 431–437. [Google Scholar] [CrossRef]
- Gimeno, L.; Trigo, R.M.; Ribera, P.; García, J.A. Editorial: Special issue on cut-off-low systems (COL). Meteorol. Atmos. Phys. 2007, 96, 1–2. [Google Scholar] [CrossRef]
- Nieto, R.; Gimeno, L.; Torre, L.D.L.; Ribera, P.; Gallego, D.; García, J.A.; Nunez, M.; Redano, A.; Lorente, J. Climatological features of cutoff low systems in the Northern Hemisphere. J. Clim. 2005, 18, 3085–3103. [Google Scholar] [CrossRef] [Green Version]
- Bamber, D.J.; Healey, P.G.W.; Jones, B.M.R.; Penkett, S.A.; Tuck, A.F.; Vaughan, G. Vertical profiles of tropospheric gases: Chemical consequences of stratospheric intrusions. Atmos. Environ. 1984, 18, 1759–1766. [Google Scholar] [CrossRef]
- Price, J.D.; Vaughan, G. Statistical studies of cut-off-low systems. Ann. Geophys. 1992, 10, 96–102. [Google Scholar]
- Ancellet, G.; Beekmann, M.; Papayannis, A. Impact of a cutoff low development on downward transport of ozone in the troposphere. J. Geophys. Res. 1994, 99, 3451–3468. [Google Scholar] [CrossRef]
- Langford, A.O.; Masters, C.D.; Proffitt, M.H.; Hise, E.Y.; Tuck, A.F. Ozone measurements in a tropopause fold associated with a cut-off low system. Geophys. Res. Lett. 1996, 23, 2501–2504. [Google Scholar] [CrossRef]
- Wirth, V. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange. Q. J. R. Meteor. Soc. 1995, 121, 127–147. [Google Scholar] [CrossRef]
- Price, J.D.; Vaughan, G. The potential for stratosphere-troposphere exchange in cut-off-low systems. Q. J. R. Meteorol. Soc. 1993, 119, 343–365. [Google Scholar] [CrossRef]
- Homeyer, C.R.; Bowman, K.P.; Pan, L.L.; Atlas, E.L.; Gao, R.S.; Campos, T.L. Dynamical and chemical characteristics of tropospheric intrusions observed during START08. J. Geophys. Res. 2011, 116, D06111. [Google Scholar] [CrossRef] [Green Version]
- Hoor, P.; Wernli, H.; Hegglin, M.I. Transport timescales and tracer properties in the extratropical UTLS. Atmos. Chem. Phys. 2010, 10, 7929–7944. [Google Scholar] [CrossRef] [Green Version]
- Yates, E.L.; Iraci, L.T.; Roby, M.C.; Pierce, R.B.; Johnson, M.S.; Reddy, P.J.; Tadić, J.M.; Loewenstein, M.; Gore, W. Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California. Atmos. Chem. Phys. 2013, 13, 12481–12494. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, F. Observations of stratospheric O-3 intrusions in air quality monitoring data in Ontario, Canada. Atmos. Environ. 2014, 98, 111–122. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Manney, G.L.; Hegglin, M.I.; Livesey, N.J.; Santee, M.L.; Daffer, W.H. Climatology and variability of trace gases in extratropical double-tropopause regions from MLS, HIRDLS, and ACE-FTS measurements. J. Geophys. Res. 2015, 120, 843–867. [Google Scholar] [CrossRef] [Green Version]
- Akritidis, D.; Katragkou, E.; Zanis, P.; Pytharoulis, I.; Melas, D.; Flemming, J.; Inness, A.; Clark, H.; Plu, M.; Eskes, H. A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: Analysis and evaluation. Atmos. Chem. Phys. 2018, 18, 15515–15534. [Google Scholar] [CrossRef] [Green Version]
- Škerlak, B.; Sprenger, M.; Pfahl, S.; Tyrlis, E.; Wernli, H. Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events. J. Geophys. Res. 2015, 120, 4860–4877. [Google Scholar] [CrossRef]
- Akritidis, D.; Pozzer, A.; Flemming, J.; Inness, A.; Zanis, P. A global climatology of tropopause folds in CAMS and MERRA-2 reanalyses. J. Geophys. Res. Atmos. 2021, 126, e2020JD034115. [Google Scholar] [CrossRef]
- Bian, J.; Gettelman, A.; Chen, H.; Pan, L.L. Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Lü, D.; Li, Q.; Bian, J.; Wu, X.; Li, D. The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations. Adv. Atmos. Sci. 2016, 33, 135–150. [Google Scholar] [CrossRef]
- Shi, C.; Li, H.; Zheng, B.; Guo, D.; Liu, R. Stratosphere-troposphere exchange corresponding to a deep convection in warm sector and abnormal subtropical front induced by a cutoff low over East Asia. Chin. J. Geophys. 2014, 57, 1–10. [Google Scholar]
- Li, D.; Bian, J.C.; Fan, Q.J. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Sci. China Earth Sci. 2015, 58, 116–128. [Google Scholar] [CrossRef]
- Chen, D.; Lü, D.R.; Chen, Z.Y. Simulation of the stratosphere-troposphere exchange process in a typical cold vortex over Northeast China. Sci. China Earth Sci. 2014, 57, 1452–1463. [Google Scholar] [CrossRef]
- Wu, X.; Lü, D.R. Calculation of stratosphere-troposphere exchange in East Asia cut-off lows: Cases from the Lagrangian perspective. Atmos. Ocean. Sci. Lett. 2016, 9, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, Z.Y.; Lü, D.R. Simulation of the generation of stratospheric gravity waves in upper-tropospheric jet stream accompanied with a cold vortex over Northeast China. Chin. J. Geophys. 2014, 57, 10–20. [Google Scholar]
- Parkinson, C.L. Aqua: An earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J.D.; et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model. Dev. 2013, 6, 1889–1904. [Google Scholar] [CrossRef] [Green Version]
- Wernli, H.; Bourqui, M. A Lagrangian “1-year climatology” of (deep) cross-tropopause exchange in the extratropical Northern Hemisphere. J. Geophys. Res. 2002, 107, ACL13. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; van Noije, T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. 2006, 111, D08301. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, M.; Wernli, H. A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res. Atmos. 2003, 108, D12. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, T.J.; Ma, L.Y.; Shi, C.H.; Guo, D.; Chen, L. Statistical Analysis of the Spatiotemporal Distribution of Ozone Induced by Cut-Off Lows in the Upper Troposphere and Lower Stratosphere over Northeast Asia. Atmosphere 2019, 10, 696. [Google Scholar] [CrossRef] [Green Version]
Cluster | Day_Hour | Long (E) | Lat (N) | P (hPa) | PV (PVU) | q (g/kg) |
---|---|---|---|---|---|---|
A1 | 18_18 | 109.13 | 57.41 | 317.95 | 4.03 | 0.04 |
19_06 | 119.37 | 51.80 | 323.81 | 3.53 | 0.06 | |
19_18 | 125.75 | 56.31 | 325.29 | 2.98 | 0.07 | |
20_06 | 123.27 | 55.73 | 364.44 | 1.48 | 0.13 | |
20_18 | 125.86 | 46.20 | 379.86 | 1.04 | 0.21 | |
21_06 | 130.95 | 48.02 | 409.28 | 0.73 | 0.36 | |
21_18 | 126.11 | 49.35 | 492.31 | 0.48 | 0.64 | |
22_06 | 123.90 | 44.92 | 543.50 | 0.45 | 0.86 | |
22_18 | 127.07 | 41.64 | 565.33 | 0.42 | 1.17 | |
A2 | 18_18 | 113.13 | 70.18 | 321.11 | 4.52 | 0.05 |
19_06 | 113.26 | 64.02 | 329.62 | 4.08 | 0.06 | |
19_18 | 120.32 | 55.58 | 338.40 | 3.53 | 0.07 | |
20_06 | 125.08 | 50.68 | 344.22 | 2.04 | 0.07 | |
20_18 | 126.33 | 50.26 | 354.25 | 1.80 | 0.10 | |
21_06 | 128.40 | 47.86 | 364.42 | 1.46 | 0.17 | |
21_18 | 128.00 | 48.19 | 419.82 | 1.07 | 0.31 | |
22_06 | 126.42 | 45.11 | 494.29 | 0.71 | 0.50 | |
22_18 | 129.78 | 42.27 | 551.90 | 0.69 | 0.91 | |
A3 | 18_18 | 111.93 | 63.75 | 325.84 | 3.12 | 0.05 |
19_06 | 116.61 | 60.26 | 337.70 | 2.55 | 0.05 | |
19_18 | 120.55 | 57.41 | 373.37 | 1.78 | 0.17 | |
20_06 | 123.13 | 50.43 | 388.44 | 1.45 | 0.20 | |
20_18 | 128.56 | 47.43 | 427.63 | 1.27 | 0.30 | |
21_06 | 131.34 | 49.72 | 502.22 | 0.77 | 0.54 | |
21_18 | 127.44 | 49.80 | 521.34 | 0.69 | 0.75 | |
22_06 | 125.22 | 46.06 | 569.05 | 0.67 | 0.98 | |
22_18 | 127.28 | 43.16 | 601.62 | 0.66 | 1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhou, T.; Guo, D.; Ge, S. Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia. Atmosphere 2022, 13, 68. https://doi.org/10.3390/atmos13010068
Chen D, Zhou T, Guo D, Ge S. Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia. Atmosphere. 2022; 13(1):68. https://doi.org/10.3390/atmos13010068
Chicago/Turabian StyleChen, Dan, Tianjiao Zhou, Dong Guo, and Shuhao Ge. 2022. "Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia" Atmosphere 13, no. 1: 68. https://doi.org/10.3390/atmos13010068
APA StyleChen, D., Zhou, T., Guo, D., & Ge, S. (2022). Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia. Atmosphere, 13(1), 68. https://doi.org/10.3390/atmos13010068