Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling Station and Instrumentation
2.2. Satellite Data
2.3. WRF Model and WRF-HYSPLIT Back-Trajectories
2.4. NAAPS Maps
3. Results
3.1. Temporal Trend of Ground-Based Measurements
3.2. Saharan Dust Transport
3.3. Local and Long-Transported Wildfires Influence
3.4. Influence of Wildfire and Saharan Dust Events on PM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Commission, E.E. Forest Fires—Sparkling Firesmart Policies in the EU; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Feyen, L.; Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 2009, 114, D17116. [Google Scholar] [CrossRef]
- Dupuy, J.L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chemical composition of wildland fire emissions. Dev. Environ. Sci. 2008, 8, 79–107. [Google Scholar]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Oliveira, M.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Environmental Particulate Matter Levels during 2017 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern? Int. J. Environ. Res. Public Health 2020, 17, 1032. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. (Eds.) Special Report on Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.; Costa, C. Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef]
- Field, R.D.; Van Der Werf, G.R.; Shen, S.S. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2009, 2, 185–188. [Google Scholar] [CrossRef]
- Querol, X.; Pey, J.; Pandolfi, M.; Alastuey, A.; Cusack, M.; Pérez, N.; Moreno, T.; Viana, M.; Mihalopoulos, N.; Kallos, G.; et al. African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 2009, 43, 4266–4277. [Google Scholar] [CrossRef]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atm. Chem. Phys. Disc. 2021, 1–34. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, J.; Wang, X. The impact of Sahara dust on air quality and public health in European countries. Atmos. Environ. 2020, 241, 117771. [Google Scholar] [CrossRef]
- Osborne, M.; Malavelle, F.F.; Adam, M.; Buxmann, J.; Sugier, J.; Marenco, F.; Haywood, J. Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: Observations from the new UK lidar and sun-photometer network. Atmos. Chem. Phys. 2019, 19, 3557–3578. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, M.; Sprovieri, F.; Cofone, F.; Pirrone, N. Variability of atmospheric aerosol and ozone concentrations at marine, urban, and high-altitude monitoring stations in southern Italy during the 2007 summer Saharan dust outbreaks and wildfire episodes. J. Air Waste Manag. Assoc. 2011, 61, 952–967. [Google Scholar] [CrossRef] [Green Version]
- Pey, J.; Querol, X.; Alastuey, A.; Forastiere, F.; Stafoggia, M. African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys. 2013, 13, 1395. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, M.; Andreoli, V.; D’Amore, F.; Simone, F.D.; Mannarino, V.; Castagna, J.; Moretti, S.; Naccarato, A.; Sprovieri, F.; Pirrone, N. Carbonaceous Aerosols Collected at the Observatory of Monte Curcio in the Southern Mediterranean Basin. Atmosphere 2019, 10, 592. [Google Scholar] [CrossRef] [Green Version]
- Calidonna, C.R.; Avolio, E.; Gullì, D.; Ammoscato, I.; Pino, M.D.; Donateo, A.; Feudo, T.L. Five Years of Dust Episodes at the Southern Italy GAW Regional Coastal Mediterranean Observatory: Multisensors and Modeling Analysis. Atmosphere 2020, 11, 456. [Google Scholar] [CrossRef]
- Conte, M.; Merico, E.; Cesari, D.; Dinoi, A.; Grasso, F.; Donateo, A.; Guascito, M.; Contini, D. Long-term characterisation of African dust advection in south-eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 2020, 233, 104690. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories—a review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Stohl, A.; Haimberger, L.; Scheele, M.; Wernli, H. An intercomparison of results from three trajectory models. Meteorol. Appl. 2001, 8, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. The Lagrangian particle dispersion model FLEXPART version 6.2. Atm. Chem. Phys. Disc. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Fleming, Z.L.; Monks, P.S.; Manning, A.J. Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical note-475+ STR; UCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar]
- Castagna, J.; Senatore, A.; Bencardino, M.; Colosimo, F.; D’Amore, F.; Sprovieri, F.; Siviglia, S.; Pirrone, N.; Mendicino, G. Longtime dataset of wildfires in the Calabria Region (southern Italy) during the period 2008–2019 and a case-study dataset of specific air quality tracers and meteorological measurements recorded at the Monte Curcio GAW station during summer 2017. Data Brief 2020. in submission. [Google Scholar]
- EC. COMMISSION STAFF WORKING PAPER establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Off. J. Eur. Union L 2011. [Google Scholar]
- Christensen, J.H. The Danish Eulerian hemispheric model—A three-dimensional air pollution model used for the Arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Castagna, J.; Senatore, A.; Bencardino, M.; D’Amore, F.; Sprovieri, F.; Pirrone, N.; Mendicino, G. Multiscale assessment of the impact on air quality of an intense wildfire season in southern Italy. Sci. Total Environ. 2020, 761, 143271. [Google Scholar] [CrossRef]
- Wang, T.; Cheung, T.; Li, Y.; Yu, X.; Blake, D. Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J. Geophys. Res. Atmos. 2002, 107, ACH-9. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Agenzia Regionale Della Protezione Ambientale (ARPACAL). Available online: http://www.arpacal.it/ (accessed on 31 December 2020).
- Larssen, N.; Sluyter, R.; Helmis, C. Criteria for EUROAIRNET. The EEA, Air Quality Monitoring and Information Network; EEA: Copenhagen, Denmark, 1999. [Google Scholar]
- Air Quality e-Reporting—Environment Agency (EEA). Available online: https://www.eea.europa.eu/data-and-maps/data/aqereporting-8 (accessed on 31 December 2020).
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Knoche, H.R.; Kunstmann, H. Sensitivity of modeled precipitation to sea surface temperature in regions with complex topography and coastlines: A case study for the Mediterranean. J. Hydrometeorol. 2014, 15, 2370–2396. [Google Scholar] [CrossRef]
- Furnari, L.; Mendicino, G.; Senatore, A. Hydrometeorological Ensemble Forecast of a Highly Localized Convective Event in the Mediterranean. Water 2020, 12, 1545. [Google Scholar] [CrossRef]
- Senatore, A.; Davolio, S.; Furnari, L.; Mendicino, G. Reconstructing flood events in Mediterranean coastal areas using different reanalyses and high-resolution meteorological models. J. Hydrometeorol. 2020, 21, 1865–1887. [Google Scholar] [CrossRef]
- Senatore, A.; Furnari, L.; Mendicino, G. Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments’ hydrological responses to heavy precipitation. Hydrol. Earth Syst. Sci. 2020, 24, 269–291. [Google Scholar] [CrossRef] [Green Version]
- CESMMA—Department of Environmental Engineering of the University of Calabria. Available online: https://cesmma.unical.it/cwf/ (accessed on 31 December 2020).
- Avolio, E.; Cavalcanti, O.; Furnari, L.; Senatore, A.; Mendicino, G. Brief communication: Preliminary hydro-meteorological analysis of the flash flood of 20 August 2018 in Raganello Gorge, southern Italy. Nat. Hazards Earth Syst. Sci. 2019, 19, 1619–1627. [Google Scholar] [CrossRef] [Green Version]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Taylor, A.D. Horizontal dispersion parameters for long-range transport modeling. J. Appl. Meteorol. Climatol. 1982, 21, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Castagna, J.; Bencardino, M.; D’Amore, F.; Esposito, G.; Pirrone, N.; Sprovieri, F. Atmospheric mercury species measurements across the Western Mediterranean region: Behaviour and variability during a 2015 research cruise campaign. Atmos. Environ. 2018, 173, 108–126. [Google Scholar] [CrossRef]
- Diéguez, M.C.; Bencardino, M.; García, P.E.; D’Amore, F.; Castagna, J.; De Simone, F.; Cárdenas, C.S.; Guevara, S.R.; Pirrone, N.; Sprovieri, F. A multi-year record of atmospheric mercury species at a background mountain station in Andean Patagonia (Argentina): Temporal trends and meteorological influence. Atmos. Environ. 2019, 214, 116819. [Google Scholar] [CrossRef]
- Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Available online: https://www.ready.noaa.gov/HYSPLIT_traj.php (accessed on 31 December 2020).
- Rolph, G.; Stein, A.; Stunder, B. Real-time environmental applications and display system: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Yerramilli, A.; Dodla, V.B.R.; Challa, V.S.; Myles, L.; Pendergrass, W.R.; Vogel, C.A.; Dasari, H.P.; Tuluri, F.; Baham, J.M.; Hughes, R.L.; et al. An integrated WRF/HYSPLIT modeling approach for the assessment of PM 2.5 source regions over the Mississippi Gulf Coast region. Air Qual. Atmos. Health 2012, 5, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Yu, Y.; He, J.; Zhao, S. Integrated modeling of urban–scale pollutant transport: Application in a semi–arid urban valley, Northwestern China. Atmos. Pollut. Res. 2013, 4, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Sari, D.; Incecik, S.; Ozkurt, N. Analysis of surface ozone episodes using WRF-HYSPLIT model at Biga Peninsula in the Marmara region of Turkey. Atmos. Pollut. Res. 2020, 11, 2361–2378. [Google Scholar] [CrossRef]
- Hogan, T.F.; Rosmond, T.E. The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Weather Rev. 1991, 119, 1786–1815. [Google Scholar] [CrossRef] [Green Version]
- Hogan, T.F.; Brody, L.R. Sensitivity studies of the Navy’s global forecast model parameterizations and evaluation of improvements to NOGAPS. Mon. Weather Rev. 1993, 121, 2373–2395. [Google Scholar] [CrossRef] [Green Version]
- Navy Operational Global Atmospheric Prediction System (NOGAPS). Available online: https://www.nrlmry.navy.mil/aerosol/ (accessed on 31 December 2020).
- ARPACAL. Allegato 4—Capitolato Tecnico Prestazionale Lotto 1, Procedura Aperta per L’acquisizione di Servizi e Forniture per la Rete Regionale di Monitoraggio della Qualità dell’aria Della Regione Calabria; Agenzia Regionale per la Protezione dell’Ambiente della Calabria: Catanzaro, Italy; 77p.
- Pavese, G.; Calvello, M.; Castagna, J.; Esposito, F. Black carbon and its impact on air quality in two semi-rural sites in Southern Italy near an oil pre-treatment plant. Atmos. Environ. 2020, 233, 117532. [Google Scholar] [CrossRef]
- Petracchini, F.; Romagnoli, P.; Paciucci, L.; Vichi, F.; Imperiali, A.; Paolini, V.; Liotta, F.; Cecinato, A. Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ. Sci. Pollut. Res. 2017, 24, 4741–4754. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Simpson, I.; Blake, D.; Yu, X.; Kwok, Y.; Li, Y. Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos. Environ. 2004, 38, 4551–4560. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, C.; Horálek, J.; de Leeuw, F.; Couvidat, F. Benzo (a) pyrene in Europe: Ambient air concentrations, population exposure and health effects. Environ. Pollut. 2016, 214, 657–667. [Google Scholar] [CrossRef]
- Nava, S.; Lucarelli, F.; Amato, F.; Becagli, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Traversi, R.; Udisti, R. Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records. Sci. Total Environ. 2015, 511, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, U.R.; Hennenberg, K.; Hünecke, K.; Herrera, R.; Wiegmann, K. Sustainable Bioenergy: Key Criteria and Indicators; Final D; Oeko-Institut: Freiburg, Germany, 2012. [Google Scholar]
- Castagna, J.; Calvello, M.; Esposito, F.; Pavese, G. Analysis of equivalent black carbon multi-year data at an oil pre-treatment plant: Integration with satellite data to identify black carbon transboundary sources. Remote Sens. Environ. 2019, 235, 111429. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Pederzoli, A.; Mircea, M.; Finardi, S.; Di Sarra, A.; Zanini, G. Quantification of Saharan dust contribution to PM10 concentrations over Italy during 2003–2005. Atmos. Environ. 2010, 44, 4181–4190. [Google Scholar] [CrossRef]
- Meloni, D.; Di Sarra, A.; Biavati, G.; DeLuisi, J.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D. Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos. Environ. 2007, 41, 3041–3056. [Google Scholar] [CrossRef]
- Gobbi, G.P.; Angelini, F.; Barnaba, F.; Costabile, F.; Baldasano Recio, J.M.; Basart, S.; Sozzi, R.; Bolignano, A. Changes in particulate matter physical properties during Saharan advections over Rome (Italy): A four-year study, 2001–2004. Atmos. Chem. Phys. 2013, 13, 7395–7404. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Doixide, Global Update 2005. Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
Period of Observation | WF Days | N WF | |
---|---|---|---|
months | June | 3 | 241 |
July | 12 | 1245 | |
August | 14 | 1288 | |
September | 2 | 117 | |
summer | June–September | 31 | 2891 |
N Days | PM2.5 (μg m−3) | PM10 (μg m−3) | PM2.5/PM10 | |
---|---|---|---|---|
Whole 2017 | 365 | 9.5 (4.9–11.6) | 15.0 (8.2–16.6) | 0.65 (0.54–0.76) |
Whole 2017 without summer | 243 | 6.8 (4.1–8.3) | 12.3 (7.5–13.7) | 0.61 (0.50–0.74) |
Summer | 122 | 14.7 (8.7–17.1) | 20.0 (13.3–23.8) | 0.72 (0.65–0.80) |
Summer Smoke | 27 | 26.1 (20.8–26.2) | 32.0 (26.0–33.1) | 0.81 (0.75–0.90) |
Summer Smoke + SD | 4 | 32.8 (25.7–40.9) | 49.5 (43.3–56.8) | 0.65 (0.59–0.71) |
Summer SD | 3 | 11.6 (10.0–13.1) | 19.1 (17.4–22.1) | 0.61 (0.59–0.65) |
Summer BKG | 88 | 10.2 (8.0–12.2) | 14.8 (12.4–17.4) | 0.70 (0.63–0.78) |
Date | PM2.5 | PM10 | PM2.5/PM10 | Source |
---|---|---|---|---|
12-07-2017 | 45.5 | 47.0 | 0.97 | Smoke |
08-07-2017 | 66.5 | 72.1 | 0.92 | Smoke |
11-07-2017 | 28.6 | 31.6 | 0.91 | Smoke |
09-07-2017 | 37.0 | 40.9 | 0.90 | Smoke |
12-08-2017 | 25.9 | 28.8 | 0.90 | Smoke |
19-08-2017 | 24.5 | 28.6 | 0.86 | Smoke |
13-07-2017 | 26.2 | 30.9 | 0.85 | Smoke |
01-09-2017 | 25.9 | 32.1 | 0.81 | Smoke |
04-08-2017 | 33.2 | 41.5 | 0.80 | Smoke |
06-08-2017 | 31.3 | 40.5 | 0.77 | Smoke |
08-08-2017 | 24.5 | 33.2 | 0.74 | Smoke |
23-07-2017 | 39.1 | 53.8 | 0.73 | Smoke + SD |
30-06-2017 | 46.3 | 65.9 | 0.70 | Smoke + SD |
05-08-2017 | 26.3 | 37.7 | 0.70 | Smoke |
24-07-2017 | 28.6 | 47.5 | 0.60 | Smoke + SD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castagna, J.; Senatore, A.; Bencardino, M.; Mendicino, G. Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season. Atmosphere 2021, 12, 144. https://doi.org/10.3390/atmos12020144
Castagna J, Senatore A, Bencardino M, Mendicino G. Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season. Atmosphere. 2021; 12(2):144. https://doi.org/10.3390/atmos12020144
Chicago/Turabian StyleCastagna, Jessica, Alfonso Senatore, Mariantonia Bencardino, and Giuseppe Mendicino. 2021. "Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season" Atmosphere 12, no. 2: 144. https://doi.org/10.3390/atmos12020144
APA StyleCastagna, J., Senatore, A., Bencardino, M., & Mendicino, G. (2021). Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season. Atmosphere, 12(2), 144. https://doi.org/10.3390/atmos12020144