Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health
Abstract
:1. Introduction
- Bivariate and multiple correlations with ecological features of the sampling sites and of their environment—for instance atmospheric deposition, canopy drip effects, and land use—with results from other biomonitoring programmes and with results from deposition measurements using technical collectors and deposition modelling;
- Geostatistical analysis and surface-covering estimation and mapping of site-specific data;
- Computation and geostatistical mapping of percentile statistics of element-, site-, and survey-specific measurements;
- Calculation and geostatistical mapping of elements integrating indices and surveys;
- Assessing the relevance of modelled HM deposition for ecosystem integrity and human health based on CL.
2. Materials and Methods
2.1. Bioaccumulation of Atmospheric Deposition of HM in Moss
- Element- and survey-specific quantiles (10 classes as defined by the 10th, 20th,100th percentile for each of the surveys) enabling to detect whether the geographical patterns of bio-accumulation hot spots of 7 elements (Cr, Cu, Fe, Ni, Pb, V, Zn: 1990–2015) and 12 elements (Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Sb, V, Zn: 1995–2015) from previous campaigns remain hot spots even with decreasing atmospheric deposition and bio-accumulation, or whether the bio-accumulation patterns shift across time or not.
- Element-specific quantiles integrating all surveys 1990–2015 allowing for a statistically derived differentiation of 7 (1990–2015) and 12 (1995–2015), respectively, element concentrations into 10 classes and for their mapping across time in time and space despite decreasing element concentrations.
- Seven and 12 elements and surveys, respectively, integrating calculation of a Multi Metals Index (MMI90-2015: 7 HM; MMI95-2015: 12 HM). To this end, gridded data on element concentration in moss were each subdivided into 10 percentile classes (0–10th percentile, > 10th to 20th percentile, … > 90th to 100th percentile). In a second step, scores are assigned to the element-specific percentile classes (0–10th percentile = index value 1, > 10th to 20th percentile = index value 2, and so on). To calculate the MMI ranging from 1 (low metal accumulation) to 10 (high metal accumulation), the element-specific index values for each object were averaged.
2.2. Assessing Impacts of Atmospheric Deposition
2.2.1. Assessment Values
2.2.2. Basics for the Determination of Critical Loads for Heavy Metal Deposition
- CL(M)eco: Critical Load for a metal (M stands for As, Cd, Cu, Cr, Hg, Ni, Pb, Zn,) to protect the sensitive biota of the ecosystem;
- CL(M)drink: Critical Load for a metal (M stands for As, Cd, Cu, Cr, Hg, Ni, Pb, Zn) for Protection of drinking water for human beings;
- CL(Cd)food: Critical Load for Cd for the protection of arable crops (here: wheat-producing as a food for human beings.
2.2.3. Calculation of Critical Loads for Heavy Metals in Germany
- CL(M) = Critical Load of the metal M (g ha−1 a−1)
- Mu = Net uptake of the metal M into harvestable plant parts (g ha−1 a−1).
- Mle(crit) = Tolerable (critical) leaching of the metal M from the considered soil layer with exclusive consideration of vertical rivers (leachate) (g ha−1 a−1).
- MinExcCL(M)eco = Minimum ecosystem critical loads exceedance in the German receptor areas due to total deposition from the air and fertiliser inputs
- MaxExcCL(M)eco = Maximum ecosystem critical loads exceedance in the German receptor areas due to total deposition from the air and fertiliser inputs
- MinMdep = Minimum of the total deposition from the air in the German receptor surfaces, corresponds to the highest minimum of the three years 2009–2011
- MaxMdep = Maximum of total deposition from the air in the German receptor surfaces corresponds to the highest maximum of the three years 2009–2011
- MinMfertilizer = Minimum of the metal inputs with the fertilization in the German receptor surfaces
- MaxMfertilizer = Maximum of the metal inputs with the fertilization in the German receptor areas
- CL(M)eco = Median of the Ecosystem Critical Loads for the metal in the German receptor surfaces
2.2.4. Modelling Heavy Metal Deposition
3. Results and Discussion
3.1. Trends of HM Bioaccumulation Integrating Metal Elements and Surveys 1990–2015
3.2. Atmospheric Heavy Metal Deposition
3.3. Heavy Metal Inputs from Other Sources
- Application of mineral and organic (“farm”) fertilisers containing HM on agricultural land (arable land and intensive grassland);
- Application of pesticides containing HM on agricultural land;
- Application of lime fertilizers containing HM in forests.
3.4. Critical Load Exceedances Due to Atmospheric Deposition
3.5. Statistical Evaluation of Critical Load Exceedances
3.5.1. Hg
3.5.2. Cd
3.5.3. Pb
3.5.4. As
3.5.5. Cu
3.5.6. Zn
3.5.7. Cr
3.5.8. Ni
3.5.9. Tl
3.5.10. V
3.6. Comparison and Discussion of Assessment Values, Risk Assessment of Heavy Metal Inputs
3.6.1. Protection of Human Health
Hg
Cd
Pb
As
Cu
Zn
Cr
Ni
Tl
V
3.6.2. Protection of Terrestrial Ecosystems (in Particular Soils) from Harmful Changes
Hg
Cd
Pb
As
Cu
Zn
Cr
Ni
Tl
V
4. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rutter, A.J. The hydrological cycle in vegetation. In Vegetation and the Atmosphere; Monteith, J.L., Ed.; Academic Press: London, UK, 1975; Volume 1, pp. 111–154. [Google Scholar]
- Dollard, G.J.; Unsworth, M.H.; Harvey, M. Pollutant transfer in upland regions by occult precipitation. Nature 1983, 302, 241–243. [Google Scholar] [CrossRef]
- Unsworth, M.; Wilshaw, J. Wet, occult and dry deposition of pollutants on forests. Agric. For. Meteorol. 1989, 47, 221–238. [Google Scholar] [CrossRef]
- Bak, J.; Doytchinov, S.; Fisher, R.; Forsius, M.; Grennfelt, P.; Harmens, H.; Hettelingh, J.-P.; Holmberg, M.; Jenkins, A.; Krzyzanowski, M. Impacts of Air Pollution on Ecosystems, Human Health and Materials under Different Gothenburg Protocol Scenarios; Report by the Working Group on Effects; LRTAP: Geneva, Switzerland, 2012; pp. 1–45. Available online: https://unece.org/fileadmin/DAM/env/documents/2012/air/WGE_31th/N_2_WGE-impact-report-2012-sept.pdf. (accessed on 22 January 2021).
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.P.; Zhang, L.; Cheng, M.-D.; Aherne, J.; Wentworth, G.R. Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems—A Review. Aerosol Air Qual. Res. 2018, 18, 1953–1992. [Google Scholar] [CrossRef] [Green Version]
- CLRTAP 2014. Guidance on Mapping Concentrations Levels and Deposition Levels, Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long-Range Transboundary Air Pollution. Available online: https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels (accessed on 20 March 2015).
- CLRTAP 2017. Revision of Guidance on Mapping Concentrations Levels and Deposition Levels, Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long-Range Transboundary Air Pollution. Available online: https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels (accessed on 28 March 2017).
- Colette, A.; Aas, W.; Banin, L.; Braban, C.F.; Ferm, M.; González Ortiz, A.; Ilyin, I.; Mar, K.; Pandolfi, M.; Putaud, J.-P. EMEP Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe. Air Pollution Trends in the EMEP Region between 1990 and 2012: Joint Report of EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-e), Meteorological Synthesizing Centre-West (MSC-w); EMEP/CCC-report 1/2016; Norwegian Institute for Air Research: Kjeller, Norway, 2016; pp. 1–105. [Google Scholar]
- EMEP 2015. EMEP Status Reports: Heavy Metals: Analysis of Long-Term Trends, Country-Specific Research and Progress in Mercury Regional and Global Modelling (No. 2/2015). Available online: http://www.msceast.org/index.php/reports (accessed on 20 July 2015).
- Country Specific Information, Complementary to the EMEP Status Reports. Available online: http://www.msceast.org/index.php/emep-countries (accessed on 20 July 2015).
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017, 69, 1328945. [Google Scholar] [CrossRef] [Green Version]
- Ilyin, I.; Gusev, A.; Rozovskaya, O.; Strijkina, I. Transboundary Pollution of Germany by Heavy Metals and Persistent Organic Pollutants in 2010; EMEP/MSC-E J Technical Report 5/2012; EMEP/MSC-E: Moscow, Russia, 2012. [Google Scholar]
- Ilyin, I.; Rozovskaya, O.; Travnikov, O.; Varygina, M.; Aas, W.; Uggerud, H.T. Heavy Metals: Transboundary Pollution of the Environment. J. EMEP Status Report 2/2011. Available online: http://www.msceast.org (accessed on 28 March 2017).
- Ilyin, I.; Rozovskaya, O.; Travnikov, O.; Varygina, M.; Aas, W.; Uggerud, H.T. Heavy Metals: Transboundary Pollution of the Environment. J. EMEP Status Report 2/2013. Available online: http://www.msceast.org (accessed on 28 March 2017).
- Schaap, M.; Roemer, M.; Sauter, F.; Boersen, G.; Timmermans, R.; Builjes, P.J.H.; Vermeulen, A.T. LOTOS-Euros: Documentation; TNO Report BandO-a R 2005/297; TNO Built Environment and Geosciences: Apeldoorn, The Netherlands, 2005. [Google Scholar]
- Schaap, M.; Timmermans, R.M.; Roemer, M.; Boersen, G.; Builtjes, P.J.; Sauter, F.J.; Velders, G.J.; Beck, J.P. The LOTOS EUROS model: Description, validation and latest developments. Int. J. Environ. Pollut. 2008, 32, 270. [Google Scholar] [CrossRef]
- Schaap, M.; Hendriks, C.; Jonkers, S.; Builtjes, P. Assessment of the atmospheric heavy metal deposition to terrestrial ecosystems in Germany. In Auswirkungen der Schwer-Metall—Emissionen auf Luftqualität und Ökosysteme in Deutschland—Quellen, Transport, Eintrag, Gefährdungspotenzial [Impacts of Heavy Metal Emission on Air Quality and Ecosystems across Germany—Sources, Transport, Deposition and Potential Hazards]; Final Report, Project No. (FKZ) 3713-63-253, Report No. (UBA-FB) 002635/E, UBA-TEXTE 106/2018; Schröder, W., Nickel, S., Schlutow, A., Nagel, H.-D., Scheuschner, T., Eds.; The German Environment Agency: Dessau, Germany, 2018; pp. 1–81. [Google Scholar]
- Torseth, K.; Aas, W.; Breivik, K.; Fjæraa, A.M.; Fiebig, M.; Hjellbrekke, A.; Myhre, C.L.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. Discuss. 2012, 12, 5447–5481. [Google Scholar] [CrossRef] [Green Version]
- Schröder, W.; Holy, M.; Pesch, R.; Zechmeister, H.; Harmens, H.; Ilyin, I. Mapping atmospheric depositions of cadmium and lead in Germany based on EMEP deposition data and the European Moss Survey 2005. Environ. Sci. Eur. 2011, 23, 19. [Google Scholar] [CrossRef] [Green Version]
- Schröder, W.; Pesch, R.; Harmens, H.; Fagerli, H.; Ilyin, I. Does spatial auto-correlation call for a revision of latest heavy metal and nitrogen deposition maps? Environ. Sci. Eur. 2012, 24, 20. [Google Scholar] [CrossRef] [Green Version]
- Onianwa, P.C. Monitoring atmospheric metal pollution: A review of the use of mosses as indicators. Environ. Monit. Assess. 2001, 71, 13–50. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Nickel, S. Mapping percentile statistics of element concentrations in moss specimens collected from 1990 to 2015 in forests throughout Germany. Atmos. Environ. 2018, 190, 161–168. [Google Scholar] [CrossRef]
- Schröder, W.; Nickel, S.; Völksen, B.; Dreyer, A.; Wosniok, W. Nutzung von Bioindikationsmethoden zur Bestimmung und Regionalisierung von Schadstoffeinträgen für eine Abschätzung des atmosphärischen Beitrags zu aktuellen Belastungen von Ökosystemen [Use of Bioindication Methods for the Determination and Regionalisation of Pollutant Inputs to Estimate the Atmospheric Contribution to Current Ecosystem Pressures]; UBA-Texte 91/2019; Umwelt Bundesamt: Dessau, Germany, 2019; Volume 1–2, pp. 1–189, 1–296. [Google Scholar]
- Berg, T.; Hjellbrekke, A.; Rühling, Å.; Steinnes, E.; Kubin, E.; Larsen, M.M.; Piispanen, J. Absolute Deposition Maps of Heavy Metals for the Nordic Countries Based on the Moss Survey; TemaNord 505; Nordic Council of Ministers: Copenhagen, Denmark, 2010; p. 35. [Google Scholar]
- Berg, T.; Steinnes, E. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: From relative to absolute values. Environ. Pollut. 1998, 98, 61–71. [Google Scholar] [CrossRef]
- Harmens, H.; Mills, G.; Hayes, F.; Norris, D.; Sharps, K. Twenty eight years of ICP Vegetation. An overview of its activities. Ann. Bot. 2015, 5, 31–43. [Google Scholar]
- Schröder, W.; Hornsmann, I.; Pesch, R.; Schmidt, G.; Markert, B.; Fränzle, S.; Wünschmann, S.; Heidenreich, H. Nitrogen and metals in two regions in Central Europe: Significant differences in accumulation in mosses due to land use? Environ. Monit. Assess. 2007, 133, 495–505. [Google Scholar]
- Schröder, W.; Holy, M.; Pesch, R.; Harmens, H.; Ilyin, I.; Steinnes, E.; Alber, R.; Aleksiayenak, Y.; Blum, O.; CosKun, M.; et al. Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J. Soils Sediments 2010, 10, 1572–1584. [Google Scholar] [CrossRef]
- Herpin, U.; Lieth, H.; Markert, B. Monitoring der Schwermetallbelastung in der Bundesrepublik Deutschland mit Hilfe von Moosanalysen [Monitoring of Heavy Metal Pollution in the Federal Republic of Germany Using Moss Analyses]; UBA-Texte 31/95: Berlin, Germany, 1995; p. 161. [Google Scholar]
- Siewers, U.; Herpin, U. Schwermetalleinträge in Deutschland—Moosmonitoring 1995/96 [Heavy Metal Deposition in Germany—Moss monitoring 1995/96]; Geologisches Jahrbuch Sonderhefte Sonderheft Heft 2; Schweizerbart: Stuttgard, Germany, 1998; p. 199. [Google Scholar]
- Siewers, U.; Herpin, U.; Strassburg, S. Schwermetalleinträge in Deutschland (Part II). Moosmonitoring 1995/96 [Heavy Metal Deposition in Germany (Part II). Moss Monitoring 1995/96]; Geologisches Jahrbuch Sonderhefte Sonderheft Heft 3; Schweizerbart: Stuttgard, Germany, 2002; p. 103. [Google Scholar]
- Pesch, R.; Schröder, W. Statistical and geoinformatical instruments for the optimisation of the German moss-monitoring network. In Managing Environmental Knowledge, Proceedings of the 20th International Conference on Informatics for Environmental Protection, Graz, Austria, 6–8 September 2006; Tochtermann, K., Scharl, A., Eds.; Shaker Verlag: Aachen, Germany, 2006; pp. 191–198. [Google Scholar]
- Schröder, W.; Nickel, S.; Schlutow, A.; Nagel, H.-D.; Scheuschner, T. Auswirkungen der Schwermetall—Emissionen auf Luftqualität und Ökosysteme in Deutschland—Quellen, Transport, Eintrag, Gefährdungspotenzial. Teil 2: Integrative Datenanalyse, Erheblichkeitsbeurteilung und Untersuchung der Gegenwärtigen Regelungen und Zielsetzungen in der Luftreinhaltung und Vergleich mit Ausgewählten Anforderungen, die sich in Bezug auf den Atmosphärischen Schadstoffeintrag aus den Verschiedenen Rechtsbereichen ergeben [Effects of Heavy Metal Emissions on Air Quality and Ecosystems in Germany—Sources, Transport, Input, Hazard Potential. Part 2: Integrative Data Analysis, Assessment of Relevance and Investigation of Current Regulations and Objectives in Air Pollution Control and Comparison with Selected Requirements Arising from the Various Areas of Legislation with Regard to Atmospheric Pollutant Input]; UBA-TEXTE 107/2018: Dessau, Germany, 2018; pp. 1–257. [Google Scholar]
- Nickel, S.; Schröder, W. Reorganisation of a long-term monitoring network using moss as biomonitor for atmospheric deposition in Germany. Ecol. Indic. 2017, 76, 194–206. [Google Scholar] [CrossRef]
- Technische Anleitung zur Reinhaltung der Luft—TA Luft (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). Erste Allgemeine Verwaltungsvorschrift zum Bundes–Immissionsschutzgesetz. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Luft/taluft.pdf (accessed on 30 January 2021).
- Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). (GBBl. I S. 1554 vom 12 Juli 1999, zuletzt geändert durch Art. 102 der Verordnung vom 31 August 2015 (GBl. I S. 1474) [Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV). Available online: https://www.gesetze-im-internet.de/bbodschv/BBodSchV.pdf (accessed on 30 January 2021).
- Neununddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39th BImSchV). [Thirty-Ninth Ordinance for the Implementation of the Federal Immission Control Act Ordinance on Air Quality Standards and Emission Ceilings]. Available online: https://www.gesetze-im-internet.de/bimschv_39/BJNR106510010.html (accessed on 30 January 2021).
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air; OJ L 23; European Parliament: Brussels, Belgium, 2005; pp. 3–16.
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner air for Europe; OJ L 152; European Parliament: Brussels, Belgium, 2008; pp. 1–44.
- Nagel, H.-D.; Becker, R.; Kraft, P.; Schlutow, A.; Schütze, G.; Weigelt-Kirchner, R. NFC Deutschland, Critical Loads, Biodiversität, Dynamische Modellierung [NFC Germany, Critical Loads, Biodiversity, Dynamic Modelling]; UBA-TEXTE 39/2008: Dessau, Germany, 2008; pp. 1–291. [Google Scholar]
- EP CLHM 2005. Expert Panel on Critical Loads of Heavy Metals (EP CLHM). How to Calculate Time Scales of Accumulation of Metals in Soils and Surface Waters? Some Methodological Principles. In NFC Deutschland, Critical Loads, Biodiversität, Dynamische Modellierung [NFC Germany, Critical Loads, Biodiversity, Dynamic Modelling]; Nagel, H.-D., Becker, R., Kraft, P., Schlutow, A., Schütze, G., Weigelt-Kirchner, R., Eds.; UBA-TEXTE 39/2008: Dessau, Germany, 2008; pp. 1–291. [Google Scholar]
- NaSE. Nationale Trendtabellen für die Deutsche Berichterstattung Atmosphärischer Emissionen (Schwermetalle) 1990–2015 [National Trend Tables for German Reporting of Atmospheric Emissions (Heavy Metals) 1990–2015]; Stand Januar 2017; Umweltbundesamt: Dessau, Germany, 2017; Available online: https://www.umweltbundesamt.de/dokument/nationale-trendtabellen-fuer-die-deutsche-2 (accessed on 6 December 2017).
- Knappe, F.; Möhler, S.; Ostermayer, A.; Lazar, S.; Kaufmann, C. Vergleichende Auswertung von Stoffeinträgen in Böden Über Verschiedene Eintragspfade [Comparative Evaluation of Substance Inputs into Soils via Different Input Paths]. Available online: https://www.umweltbundesamt.de/publikationen/vergleichende-auswertung-von-stoffeintraegen-in (accessed on 30 January 2021).
- CLC 2006. Karte der Bodenbedeckung [Land Cover Map]. CORINE Land Cover 2006. Available online: https://www.umweltbundesamt.de/themen/boden-landwirtschaft/flaechensparen-boeden-landschaften-erhalten/corine-land-cover-clc (accessed on 28 March 2017).
- Zeddel, A.; Quadflieg, A.; Utermann, J. Grundsätze für die Anwendung der Geringfügigkeitsschwellen an der Schnittstelle Wasserrecht—Abfallrecht—Bodenschutzrecht [Principles for the Application of Minimum Thresholds at the Interface of Water Law—Waste Law—Soil Protection Law]. Recht/Strategie/Wirtschaft 2016. Available online: https://www.vivis.de/wp-content/uploads/MNA3/2016_MNA_051-64_Zeddel.pdf (accessed on 28 March 2017).
- Doyle, P.J.; Gutzman, D.W.; Sheppard, M.I.; Sheppard, S.C.; Bird, G.A.; Hrebenyk, D. An ecolocical risk assessment of air emissions of trace metals from copper and zinc production facilities. J. Hum. Ecol. Risk Assess. 2003, 9, 607–636. [Google Scholar] [CrossRef]
- Reinds, G.J.; Groenenberg, J.E.; De Vries, W.D. Critical loads of copper, nickel, zinc, arsenic, chromium and selenium for terrestrial ecosystems at a European scale. A preliminary assessment; Alterra-Rapport; Alterra: Wageningen, The Netherlands, 2005; pp. 1–45. [Google Scholar]
- Crommentuijn, T.; Polder, M.D.; van de Plassche, E.J. Maximum Permissible Concentrations and Neglectible Concentrations for Metals, Taking Background Concentrations into Account; Report Nr. 601501 001; National Institut of Public Health and Environment: Bilthoven, The Netherlands, 1997. [Google Scholar]
- Tipping, E. WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. J. Elsevier. 1994, 20, 973–1023. [Google Scholar] [CrossRef]
- Markert, B. Multi-element analysis in plant material-analytical tools and biological questions. In Biochemistry of Trace Elements; Adriano, D.C., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1992; pp. 401–428. [Google Scholar]
- LANUV NRW (Landesamt für Natur, Umwelt und Verbraucherschutz NRW). Jahreskenngrößen der LUQS-Messstetionen des LANUV NRW für die Jahre 2003–2013 [Annual characteristics of the LUQS measuring stations of LANUV NRW for the years 2003–2013]. 2015. Available online: https://www.lanuv.nrw.de/umwelt/luft/immissionen/messorte-und-werte (accessed on 28 March 2017).
- Schroeder, H.A.; Balassa, J.J.; Tipton, H.J. Vanadium in plants. J. Chronic Dis. 1963, 16, 1047–1071. [Google Scholar] [CrossRef]
- EU (2000) Position Paper: Ambient Air Pollution by AS, CD and NI Compounds. Working Group on Arsenic, Cadmium and Nickel Compounds. Available online: http://ec.europa.eu/environment/air/pdf/pp_as_cd_ni.pdf (accessed on 28 March 2017).
- Bundes-Trinkwasserverordnung (BTrinkwV 2001) BGBl. I S. 2977: Verordnung Über die Qualität von Wasser für den Menschlichen Gebrauch [Regulation on the Quality of Water Intended for Human Consumption]. Available online: https://www.gesetze-im-internet.de/trinkwv_2001/BJNR095910001.html (accessed on 30 January 2021).
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; pp. 1–632. [Google Scholar]
- CLRTAP 2004. Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends; UBA-Texte 52/2004: Dessau, Germany, 2004; pp. 1–266. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/4038/dokumente/manual_complete_english.pdf (accessed on 28 March 2017).
- Landesumweltamt Brandenburg-LUA Bbg. Vollzugshilfe zur Ermittlung erheblicher und irrelevanter Stoffeinträge in Natura 2000-Gebiete [Implementation Aid for the Identification of Significant and Irrelevant Substance Inputs into Natura 2000 areas]. Available online: https://mluk.brandenburg.de/sixcms/media.php/9/FFH-Vollzugshilfe-Stoffeintraege.pdf (accessed on 30 January 2021).
- Madejón, P. Thallium. Chapter 23 in Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 543–547. [Google Scholar]
- Scholl, G.; Metzger, F. Erhebungen über die Ti-Belastung von Nutzpflanzen auf kontaminierten Böden im Raum Lengerich [Surveys on the Ti contamination of crops on contaminated soil in the Lengerich area]. J. Landwirtsch. Forsch. 1981, 38, 216–223. [Google Scholar]
Metal | TA Luft 1 | TA Luft 2 | BBodSchV 3 | 39th BImSchV 4,5 | Directive 2004/107/EC 5 | Directive 2008/50/EC 5 |
---|---|---|---|---|---|---|
Emitter-Related | General Load | |||||
Hg | 4 | 110 F, 11 G | 1.5 | |||
Cd | 7 | 9 F, 117 G | 6 | 4.4 H, 7 C, 4 D, 2.5 F G | 4.4 H, 7 C, 4 D, 2.5 F G | |
Pb | 365 | 675 F, 6935 G | 400 | 435 H, 716 C, 420 D, 250 F G | 435 H, 716 C, 420 D, 250 F G | |
As | 15 | 4271 F, 219 G | 5.2 H, 6 C, 4 D, 2.2 F G | 5.2 H, 6 C, 4 D, 2.2 F G | ||
Ni | 55 | 100 | 17.4 H, 28 C, 17 D, 10 F G | 17.4 H, 28 C, 17 D, 10 F G | ||
Cu | 360 | |||||
Zn | 1200 | |||||
Cr | 300 | |||||
Tl | 7 | 26 |
Sources for Appraisal Values | Designation/Category of Appraisal Values | Binding Force | Objects of Protection | Level of Protection | Application for the Assessment | Impact Indicator |
---|---|---|---|---|---|---|
39th BImSchV [38] | Immission limit value (Pb) | Legally binding | Man + Environment | Precaution + danger prevention | General strain | Human toxicological impact thresholds |
Target values (As, Cd, Ni) | Not legally binding | Man + Environment | Precaution + danger prevention | General strain | Human toxicological impact thresholds | |
TA Luft [36] | Immission values for pollutant deposition | Binding on administra-tive action | Environment | Hazard prevention (immission values) | Plants requiring approval | Human toxicological impact thresholds |
Directive 2004/107/EC [39] | Immission target values | EU recommendation | Man and environment (via soil, plants) | Precaution + danger prevention | General strain | Human toxicological impact thresholds |
Directive 2008/50/EC [40] | Immission limit value (Pb) | Legally binding | Man + Environment | Precaution + danger prevention | General strain | Human toxicological impact thresholds |
CLRTAP [7,8] | Critical Loads (CL(M)eco) (Section 2.2.2) | Recommendation/orientation | Terrestrial ecosystems, soil organisms and plants | Precaution | General strain | Ecotoxicological thresholds NOEC, LOEC microorganisms, invertebrates and plants |
Critical Loads (CL(M)drink), (CL(Cd)food) (Section 2.2.2) | Recom-mendation/ orientation | Human | Precaution | General strain | Limit values of Drinking Water Ordinance and critical limit for Cd in wheat | |
BBodSchV [37] | Precaution-ary values | Legally binding | Ecosystems, soil organisms and plants | Precaution | General validity (cross-use) | Ecotoxicological thresholds NOEC, LOEC, (in future: HC5, EC10) of soil organisms and plants (all pathways) + Background values |
Permissible annual additional load | Legally binding * | Ecosystems, soil organisms and plants (all paths of action) | Pension entitlement and limited in the long run | General validity (cross-use) | Information on the amount of ubiquitous deposition |
Heavy Metal | Survey(s) | Trend |
---|---|---|
Pb, Fe | 1990–2015 | Continuous reduction of concentrations |
2015 | Only areas with very low concentrations * | |
Cr, Sb, Zn | 1990 (1995)–2015 | Statistically significant decrease |
2000–2005 | Interim increase | |
2015 | Only areas with very low concentrations * | |
Al, As, Cd, Cu, Hg, Ni, V | 1990 (1995)–2015 | Statistically significant decrease |
2000–2005 | Intermediate standstill |
Statistical Parameter | Pb | Cd | As | Ni | Cu | Zn | Cr | V |
---|---|---|---|---|---|---|---|---|
5. Perc. | 4.96 | 0.21 | 0.282 | 1.98 | 3.07 | 11.89 | 0.84 | 0.33 |
25. Perc. | 5.90 | 0.26 | 0.333 | 2.35 | 4.81 | 16.07 | 1.03 | 0.39 |
50. Perc. | 6.71 | 0.29 | 0.380 | 2.69 | 5.89 | 19.08 | 1.22 | 0.44 |
75. Perc. | 7.81 | 0.33 | 0.437 | 3.10 | 7.17 | 22.24 | 1.45 | 0.52 |
95. Perc. | 11.00 | 0.45 | 0.603 | 3.92 | 10.67 | 33.38 | 2.08 | 0.85 |
Min. | 3.59 | 0.17 | 0.208 | 1.42 | 1.98 | 8.24 | 0.66 | 0.30 |
Max. | 87.25 | 2.33 | 1.026 | 7.11 | 29.42 | 76.63 | 3.97 | 1.90 |
Mean | 7.24 | 0.31 | 0.401 | 2.80 | 6.42 | 20.25 | 1.31 | 0.49 |
Heavy Metal | Acre | Grassland | Organic Agriculture | Forest | |||||
---|---|---|---|---|---|---|---|---|---|
Mineral Fertilizer | Compost | Sewage Sludge | Farm Fertilizer | Mineral Fertilizer | Farm Fertilizer | Farm Fertilizer | Liming | ||
As | Min. | 0.99 | 8.91 | 4.4 | 0.76 | 1.07 | 2.61 | 0.527 | 0.4 |
Max | 1.69 | 31.28 | 7.97 | 3.9 | 1.28 | 4.98 | 0.72 | ||
Pb | Min. | 4.19 | 82.82 | 47.98 | 1.81 | 8.11 | 8.65 | 0.859 | 0.7 |
Max. | 8.76 | 315.89 | 87.28 | 10.39 | 9.31 | 10.94 | 1.245 | ||
Cd | Min. | 1.33 | 1.61 | 1.14 | 0.4 | 2.05 | 0.66 | 0.619 | 0.2 |
Max. | 3.3 | 4.57 | 2.61 | 1.43 | 2.61 | 0.86 | 0.82 | ||
Cr | Min. | 46.61 | 73.42 | 55.45 | 40.65 | 24.42 | 21.51 | 8.82 | 8.2 |
Max. | 57.23 | 163.8 | 70.14 | 59.32 | 29.2 | 27.32 | 10.38 | ||
Cu | Min. | 11.27 | 98.61 | 282.21 | 8.8 | 20.27 | 81.43 | 0.78 | 0.8 |
Max. | 34.61 | 397.79 | 514.49 | 220.17 | 27.13 | 174.27 | 3.53 | ||
Ni | Min. | 6.64 | 31.83 | 26.76 | 5.15 | 5.4 | 8.32 | 1.75 | 1.6 |
Max. | 9.16 | 109.76 | 45.77 | 16.75 | 5.8 | 14.82 | 2.03 | ||
Hg | Min. | 0.01 | 0.27 | 0.64 | 0.01 | 0.03 | 0.06 | 0.037 | 0.06 |
Max. | 0.05 | 1.06 | 1.19 | 0.09 | 0.03 | 0.12 | 0.046 | ||
Tl | Min. | 0.08 | 0.26 | 0.33 | 0.04 | 0.11 | 0.13 | 0.08 | 0.09 |
Max. | 0.18 | 0.85 | 0.64 | 0.23 | 0.14 | 0.24 | 0.09 | ||
Zn | Min. | 66.76 | 376.05 | 694.12 | 31.09 | 99.35 | 331.6 | 9.73 | 4.2 |
Max. | 250.2 | 1445.75 | 1272.09 | 911.77 | 129.54 | 706.5 | 27.48 |
Deposition Hg 2013 | Critical Loads | ||||
---|---|---|---|---|---|
EMEP [10,11] | EMEP [10,11] | CL(Hg)eco | CL(Hg)eco | CL(Hg)drink | CL(Hg)drink |
5. Perc. | 95. Perc. | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) |
0.00 | 0.87 | 0 | 0.2–0.6 (0.4) | 0.26 | 0.6–5.7 (3.2) |
Deposition Cd 2010 | Critical Loads | ||||||
---|---|---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Cd)eco | CL(Cd)eco | CL(Cd)drink | CL(Cd)drink | CL(Cd)food | CL(Cd)food |
5. Perc. | 95. Perc. | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) |
0.21–0.45 (0.29) | 2.33 | 1.53 | 4.1–42.4 (10.5) | 0.65 | 2.5–18 (10.2) | 2.31 | 3–9.3 (6) |
Deposition Pb 2010 | Critical Loads | ||||
---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Pb)eco | CL(Pb)eco | CL(Pb)drink | CL(Pb)drink |
5. Perc. | 95. Perc. | Min | 5.–95. Perc. (Median) | Min | 5.–95. Perc. (Median) |
4.43–11 (6.71) | 87.25 | 1.97 | 6–601 (21) | 2.8 | 9–61 (35) |
Deposition As 2010 | Critical Loads | ||||
---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(As)eco | CL(As)eco | CL(As)drink | CL(As)drink |
5. Perc. | 95. Perc | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) |
0.28–0.6 (0.38) | 1.03 | 115 | 181–711 (414) | 2 | 6–56 (31) |
Deposition Cu 2010 | Critical Loads | ||||
---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Cu)eco | CL(Cu)eco | CL(Cu)drink | CL(Cu)drink |
5. Perc. | 95. Perc. | Min | 5.–95. Perc. (Median) | Min | 5.–95. Perc. (Median) |
3.1–10.67 (5.89) | 29.42 | 7 | 13–710 (74) | 484 | 1070–11,268 (6172) |
Deposition Zn 2010 | Critical Loads | ||||
---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Zn)eco | CL(Zn)eco | CL(Zn)drink | CL(Zn)drink |
5. Perc. | 95. Perc. | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) |
11.89–33.38 (19.08) | 76.63 | 81 | 189–1032 (565) | 1234 | 2848–28,316 (15,628) |
Deposition 2010 | Critical Loads | ||||
---|---|---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Cr)eco | CL(Cr)eco | CL(Cr)drink | CL(Cr)drink |
5. Perc. | 95. Perc. | Min. | 5.–95. Perc. (Median) | Min. | 5.–95. Perc. (Median) |
0.84–2.08 (1.22) | 3.97 | 78 | 115–448 (263) | 12 | 28–282 (156) |
Deposition 2010 | Critical Loads | ||
---|---|---|---|
Schaap et al. [18] | Schaap et al. [18] | CL(Ni)eco | CL(Ni)eco |
5. Perc. | 95. Perc. | Min. | 5.–95. Perc. (Median) |
1.98–3.92 (2.69) | 7.11 | 37 | 109–3338 (518) |
Terms of the Balance Sheet | Acre | Grassland | Forest |
---|---|---|---|
Yield minimum (t dry mass ha−1 a−1) | 2.199 | 0.1 | 0.65 |
Yield maximum (t dry mass ha−1 a−1) | 14.088 | 6.5 | 7.4 |
Tl withdrawal by biomass harvest Minimum (g ha−1 a−1) | 0.11 | 0.005 | 0.033 |
Tl removal by biomass harvest maximum (g ha−1 a−1) | 0.704 | 0.325 | 0.37 |
Leakage water rate minimum (m³ ha−1 a−1) | 175 | 125 | 70 |
Seepage water rate maximum (m³ ha−1 a−1) | 949 | 678 | 380 |
Acceptable Tl- washing rate minimum (g ha−1 a−1) | 0.035 | 0.025 | 0.014 |
Acceptable Tl- washout rate maximum (g ha−1 a−1) | 0.19 | 0.136 | 0.076 |
Acceptable total Tl discharge minimum (g ha−1 a−1) | 0.145 | 0.03 | 0.046 |
Acceptable total Tl discharge maximum (g ha−1 a−1) | 0.894 | 0.46 | 0.446 |
Terms of the Balance Sheet | Acre | Grassland | Wood |
---|---|---|---|
Yield minimum (t dry mass ha−1 a−1) | 2.199 | 0.1 | 0.65 |
Yield maximum (t dry mass ha−1 a−1) | 14.088 | 6.5 | 7.4 |
V extraction by biomass harvest minimum (g ha−1 a−1) | 1.54 | 0.07 | 0.455 |
V extraction by biomass harvest maximum (g ha−1 a−1) | 9.86 | 4.55 | 5.18 |
Leakage water rate minimum (m³ ha−1 a−1) | 175 | 125 | 70 |
Seepage water rate maximum (m³ ha−1 a−1) | 949 | 678 | 380 |
Acceptable V-washing rate minimum (g ha−1 a−1) | 0.7 | 0.5 | 0.28 |
Acceptable V-washing rate minimum (g ha−1 a−1) | 3.8 | 2.71 | 1.52 |
Acceptable total V discharge minimum (g ha−1 a−1) | 2.24 | 0.57 | 0.735 |
Acceptable total V discharge minimum (g ha−1 a−1) | 13.66 | 7.62 | 6.697 |
Metal | TALuft Table 6 | TALuft Table 8 | 39th BImSchV Coniferous/Deciduous Forest/ Arable Land 1 | EU-Position Paper Coniferous/Deciduous Forest/ Arable Land 1 | CL(M)Food | CL(M)Drink |
---|---|---|---|---|---|---|
Emitter-Related | General Load | |||||
Hg | 4+ | 110+ | 0.3–13.8−− | |||
Cd | 7+ | 9+ | 7/4/2.5+ | 9–18+ | 1.9–19.2− | 0.8–42.6- |
Pb | 365+ | 675+ | 716/420/250+ | 3–142−− | ||
As | 15+ | 4271+ | 6/4/2.2+ | 3–9/4–13/1.5–5+ | 2–138+ | |
Ni | 55+ | 28/17/10+ | 8–42/14–72/5–25− | |||
Cu | 484–27,533+ | |||||
Zn | 1234–69,133+ | |||||
Cr | 12–688+ |
Assessment Value (LUA Brandenburg 2008) | TALuft Table 6 | TALuft Table 8 | BBodSchV Permissible Additional Load | 39th BImSchV Coniferous/Deciduous Forest/Arable Land 1 | EU-Position Paper Coniferous/Deciduous Forest/Arable Land 1) | CL(M)eco | |
---|---|---|---|---|---|---|---|
Emittent-Related | General Load | ||||||
(g ha−1 100 a−1) | (g ha−1 a−1) | ||||||
Hg | 2+ | 4+ | 110+ | 1.5+ | 0.1–1.1−− | ||
Cd | 5+ | 7+ | 9+ | 6+ | 7/4/2.5+ | 9–18+ | 1.5–127.6 − |
Pb | 768+ | 365+ | 675+ | 400+ | 716/420/250+ | 2–2603−− | |
As | 15+ | 4271+ | 6/4/2.2+ | 3–9/4–13/1.5–5+ | 115–1669+ | ||
Ni | 154+ | 55+ | 100+ | 28/17/10+ | 8–42/14–72/5–25− | 37–11,232+ | |
Cu | 360+ | 7–3384−− | |||||
Zn | 1200+ | 81–2457+ | |||||
Cr | 300+ | 78–1049+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlutow, A.; Schröder, W.; Nickel, S. Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health. Atmosphere 2021, 12, 193. https://doi.org/10.3390/atmos12020193
Schlutow A, Schröder W, Nickel S. Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health. Atmosphere. 2021; 12(2):193. https://doi.org/10.3390/atmos12020193
Chicago/Turabian StyleSchlutow, Angela, Winfried Schröder, and Stefan Nickel. 2021. "Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health" Atmosphere 12, no. 2: 193. https://doi.org/10.3390/atmos12020193
APA StyleSchlutow, A., Schröder, W., & Nickel, S. (2021). Atmospheric Deposition and Element Accumulation in Moss Sampled across Germany 1990–2015: Trends and Relevance for Ecological Integrity and Human Health. Atmosphere, 12(2), 193. https://doi.org/10.3390/atmos12020193