First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Preparation and NAA Analysis
2.3. Positive Matrix Factorization (PMF) Analysis
3. Results
3.1. Elemental Concentrations in Mosses
3.2. Source Apportionment of Elemental Concentrations
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, B.; Pankrath, J. Effects of Accumulation of Air Pollutants in Forest Ecosystems; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Aničić, M.; Tomašević, M.; Tasić, M.; Rajšić, S.; Popović, A.; Frontasyeva, M.V.; Lierhagen, S.; Steinnes, S. Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time. J. Hazard. Mat. 2009, 171, 182–188. [Google Scholar] [CrossRef]
- Meyer, C.; Diaz-de-Quijano, M.; Monna, F.; Franchi, M.; Toussaint, M.; Gilbert, D.; Bernard, N. Characterization and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem. Atmos. Environ. 2015, 101, 286–293. [Google Scholar] [CrossRef]
- Eleftheriadis, K.; Colbeck, I. Coarse atmospheric aerosol: Size distributions of trace elements. Atmos. Environ. 2001, 35, 5321–5330. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Pisani, T.; Paoli, L.; Munzi, S.; Loppi, S. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ. Pollut. 2012, 166, 208–211. [Google Scholar]
- Gerdol, R.; Marchesini, R.; Iacumin, P.; Brancaleoni, L. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 2014, 108, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Diapouli, E.; Popovicheva, O.; Kistler, M.; Vratolis, S.; Persiantseva, N.; Timofeev, M.; Kasper-Giebl, A.; Eleftheriadis, K. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010. Atmos. Environ. 2014, 96, 393–404. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O.; the participants of the moss survey. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond. In Report of ICP Vegetation Moss Survey Coordination Center; Joint Institute for Nuclear Research: Dubna, Russia, 2020; p. 136. ISBN 978-5-9530-0508-1. [Google Scholar]
- Adamo, P.; Giordano, S.; Vingiani, S.; Castaldo Cobianchi, R.; Violante, P. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ. Pollut. 2003, 122, 91–103. [Google Scholar] [CrossRef]
- Szczepaniak, K.; Biziuk, M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ. Res. 2003, 93, 221–230. [Google Scholar] [CrossRef]
- Krmar, M.; Wattanavatee, K.; Radnović, D.; Slivka, J.; Bhongsuwan, T.; Frontasyeva, M.V.; Pavlov, S.S. Airborne radionuclides in mosses collected at different latitudes. J. Environ. Radioact. 2013, 117, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Krmar, M.; Radnović, D.; Hansman, J.; Mesaroš, M.; Betsou, C.H.; Jakšić, T.; Vasić, P. Spatial distribution of 7Be and 137Cs measured with the use of biomonitors. J. Radioanal. Nucl. Chem. 2018, 318, 1845–1854. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.; Mills, G. The participants of the moss survey. In Heavy Metals and Nitrogen in Mosses: Spatial Patterns in 2010/2011 and Long-Term Temporal Trends in Europe; ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology: Bangor, UK, 2013; p. 63. [Google Scholar]
- Czarnowska, K.; Rejment-Grochowska, I. Concentration of heavy metals-iron, manganese, zinc and copper in mosses. Acta Soc. Bot. Pol. 1974, 43, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Hristozova, G.; Marinova, S.; Svozilík, E.; Nekhoroshkov, P.; Frontasyeva, M.V. Biomonitoring of elemental atmospheric deposition: Spatial distributions in the 2015/2015 moss survey in Bulgaria. J. Radioanal. Nucl. Chem. 2020, 323, 839–849. [Google Scholar] [CrossRef]
- Rühling, Ε.; Tyler, G. An ecological approach to the lead problem. Bot. Notiser 1968, 121, 321–342. [Google Scholar]
- Little, P.; Martin, M.H. Biological monitoring of heavy metal pollution. Environ. Pollut. 1974, 6, 1–19. [Google Scholar] [CrossRef]
- Gjengedal, E.; Steinnes, E. Uptake of metal ions in moss from artificial precipitation. Environ. Monit. Assess. 1990, 14, 77–87. [Google Scholar] [CrossRef]
- Steinnes, E.; Rambaek, J.; Hanssen, E. Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 1992, 25, 735–752. [Google Scholar] [CrossRef]
- Krmar, M.; Radnović, D.; Hansman, J. Correlation of unsupported 210Pb in soil and moss. J. Environ. Radioact. 2014, 129, 23–26. [Google Scholar] [CrossRef]
- Krmar, M.; Radnović, D.; Hansman, J.; Repić, P. Influence of broadleaf forest vegetation on atmospheric deposition of airborne radionuclides. J. Environ. Radioact. 2017, 177, 32–36. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; the participants of the Moss Survey. Spatial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990–2005); ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology: Bangor, UK, 2008. [Google Scholar]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef]
- Glime, J.M. Bryophyte ecology. In Physiological Ecology; Michigan Technological University and the International Association of Bryologists: Houghton, MI, USA, 2017; Volume 1, Available online: http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 25 March 2017).
- Betsou, C.H.; Tsakiri, E.; Kazakis, N.; Hansman, J.; Krmar, K.; Frontasyeva, M.; Ioannidou, A. Heavy metals and radioactive nuclide concentrations in mosses in Greece. Radiat. Eff. Defects Solids 2018, 173, 851–856. [Google Scholar] [CrossRef]
- Chakrabortty, S.; Paratkar, G.T. Biomoitoring of trace element air pollution using mosses. Aerosol Air Qual. Res. 2006, 6, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Frontasyeva, M.V.; Steinnes, E.; Harmens, H. Monitoring long-term and large-scale deposition of air pollutants based on moss analysis. In Biomonitoring of Air Pollution Using Mosses and Lichens: Passive and Active Approach—State of the Art and Perspectives; Aničić Urošević, M., Vuković, G., Tomašević, M., Eds.; Nova Science Publishers: New York, NY, USA, 2016; ISBN 978-1-53610-051-8. Available online: https://novapublishers.com/shop/biomonitoring-of-air-pollution-using-mosses-and-lichens-a-passive-and-active-approach-%E2%80%92-state-of-the-art-research-and-perspectives/ (accessed on 29 December 2020).
- Holy, M.; Pesch, R.; Schröder, W.; Harmens, H.; Ilyin, I.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000 and 2005. J. Atmos. Chem. 2009, 63, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Gusev, A.; Iliyn, I.; Rozovskaya, O.; Shatalov, V.; Sokovych, V.; Travnikov, O. Modelling of heavy metals and persistent organic pollutants: New developments. In EMEP/MSC-E Technical Report 1/2010; Meteorological Synthesizing Centre e East: Moscow, Russia, 2010; Available online: http://en.msceast.org/reports/1_2010.pdf (accessed on 29 December 2020).
- Harmens, H.; Mills, G.; Hayes, F.; Norris, D.A.; Sharps, K. Twenty-eight years of ICP Vegetation: An overview of its activities. Ann. Bot. 2015, 5, 31–43. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H. Heavy Metals, Nitrogen and POPs in European Mosses: 2015 Survey—Monitoring Manual, 2015; ICP Vegetation: Bangor, UK, 2015; Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/Moss%20protocol%20manual.pdf (accessed on 29 December 2020).
- Qarri, F.; Lazo, P.; Stafilov, T.; Frontasyeva, M.; Harmens, H.; Bekteshi, L.; Baceva, K.; Goryainov, Z. Multi-elements atmospheric deposition in Albania. Environ. Sci. Pollut. Res. 2014, 21, 2506–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belis, C.A.; Larsen, B.R.; Amato, F.; El Haddad, I.; Favez, O.; Harrison, R.M.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévôt, A.; et al. European guide on air pollution source apportionment with receptor models—Revised version 2019. In 2019 JRC Technical Reports; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.I.; Vratolis, S.; Vasilatou, V.; Pateraki, S.; Bairachtari, K.A.; Querol, X. AIRUSE-LIFE+: Estimation of natural source contributions to urban ambient air PM10 and PM2.5 concentrations in southern Europe—Implications to compliance with limit values. Atmos. Chem. Phys. 2017, 17, 3673–3685. [Google Scholar] [CrossRef] [Green Version]
- Almeida, S.M.; Manousakas, M.; Diapouli, E.; Kertesz, Z.; Samek, L.; Hristova, E.; Šega, K.; Padilla Alvarez, R.; Belis, C.A.; Eleftheriadis, K. The IAEA European Region Study GROUP. Ambient particulate matter source apportionment using receptor modeling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115199. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Bellis, C.A.; Vasilatou, V.; Gini, M.; Lucarelli, F.; Querol, X.; Eleftheriadis, K. Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area. Environ. Res. 2021, 192, 110257. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R.B.; Jaksic, M.; Bogdanovic-Radovic, I.; Eleftheriadis, K. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Methods Phys. Res. B 2015, 349, 114–124. [Google Scholar] [CrossRef]
- Belis, C.A.; Pernigotti, D.; Pirovano, G.; Favez, O.; Jaffrezo, J.L.; Kuenen, J.; van Der Gon, H.D.; Reizer, M. Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmos. Environ. 2020, X5, 100053. [Google Scholar] [CrossRef]
- Christensen, E.R.; Steinnes, E.; Eggen, O.A. Anthropogenic and geogenic mass input of trace elements to moss and natural surface soil in Norway. Sci. Total Environ. 2018, 613–614, 371–378. [Google Scholar] [CrossRef]
- Xiao, J.; Han, X.; Sun, S.; Wang, L.; Rinklebe, J. Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors. Environ. Pollut. 2020, in press. [Google Scholar] [CrossRef]
- Lazaridou-Dimitriadou, M.; Koukoumides, C.; Lekka, E.; Gaidagis, G. Integrative evaluation of the ecological quality of metalliferous streams (Chalkidiki, Macedonia, Hellas). Environ. Monit. Assess. 2004, 90, 59–86. [Google Scholar] [CrossRef]
- Pappa, F.K. Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl. Radiat. Isot. 2016. [Google Scholar] [CrossRef]
- Chantzi, P.; Dotsika, E.; Raco, B. Isotope Geochemistry Survey in Ierissos Gulf Basin, North Greece, IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 052036. [Google Scholar] [CrossRef] [Green Version]
- Argyraki, A. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ. Geochem. Health 2016, 36, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Argyraki, A.; Boutsi, Z.; Zotiadis, V. Towards sustainable remediation of contaminated soil by using diasporic bauxite: Laboratory experiments on soil from the sulfide mining village of Stratoni, Greece. J. Geochem. Explor. 2017, 183, 214–222. [Google Scholar] [CrossRef]
- Hovardas, T. “Battlefields” of blue flags and seahorses: Acts of “fencing” and “defencing” place in a gold mining controversy. J. Environ. Psychol. 2017, 53, 100–111. [Google Scholar] [CrossRef]
- Hill, M.O.; Bell, N.; Bruggeman-Nannenga, M.A.; Brugués, M.; Cano, M.J.; Enroth, J.; Flatberg, K.I.; Frahm, J.-P.; Gallego, M.T.; Garilleti, R.; et al. An annotated checklist of the mosses of Europe and Macaronesia. Bryological Monograph. J. Bryol. 2006, 28, 198–267. [Google Scholar] [CrossRef]
- Pavlov, S.S.; Dmitriev, A.Y.; Chepurchenko, I.A.; Frontasyeva, M.V. Automation system for measurement of gamma-ray spectra of induced activity for neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research. Phys. Elem. Part. Nucl. 2014, 11, 737–742. [Google Scholar] [CrossRef]
- Belis, C.A.; Larsen, R.; Amato, F.; El Hadad, I.; Olivier, F.; Harisson, R.M.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévȏt, A.; et al. Reference Report of the European Guide on Air Pollution Source Apportionment with Receptor Models; Joint Research Centre Institute for Environment and Sustainability: Ispra, Italy, 2014; pp. 1–92. [Google Scholar] [CrossRef]
- EPA Positive MatrixFactorization (PMF) 5.0 Fundamentals and User Guide; US EPA: Washington, DC, USA, 2014.
- Paatero, P.; Tapper, U. Analysis of different modes off actor analysis as least squares fit problems. Chemom. Intell. Lab. Syst. 1993, 18, 183–194. [Google Scholar] [CrossRef]
- Vaccaro, S.; Sobiecka, E.; Contini, S.; Locoro, G.; Free, G.; Gawlik, B.M. The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere 2007, 69, 1055–1063. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.H.; Saraga, T.; Grigoratos, T.H.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Dörter, M.; Karadeniz, H.; Saklangiç, U.; Yenisoy-Karakaş, S. The use of passive lichen biomonitoring in combination with positive matrix factor analysis and stable isotopic ratios to assess the metal pollution sources in throughfall deposition of Bolu plain, Turkey. Ecol. Indic. 2020, 113, 106212. [Google Scholar] [CrossRef]
- Yurukova, L.; Tsakiri, E.; Çayir, A. Cross-Border Response of Moss, Hypnum cupressiforme Hedw. to Atmospheric Deposition in Southern Bulgaria and Northeastern Greece. Bull. Environ. Contam. Toxicol. 2009, 83, 174–179. [Google Scholar] [CrossRef]
- Betsou, C.H.; Tsakiri, E.; Kazakis, N.; Vasilev, A.; Frontasyeva, M.; Ioannidou, A. Atmospheric deposition of trace elements in Greece using moss Hypnum cupressiforme Hedw as biomonitors. J. Radioanal. Nucl. Chem. 2019, 320, 597–608. [Google Scholar] [CrossRef]
- Lage, J.; Wolterbeek, H.T.H.; Reis, M.A.; Chaves, P.C.; Garcia, S.; Almeida, S.M. Source apportionment by positive matrix factorization on elemental concentration obtained in PM10 and biomonitors collected in the vicinities of a steelworks. J. Radioanal. Nucl. Chem. 2016, 309, 397–404. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Kantarelou, V.; Zarkadas, C.; Kalogridis, A.-C.; Karydas, A.-G.; Eleftheriadis, K. XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrom. 2017, 1–11. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Aničić, M.; Frontasyeva, M.V.; Tomašević, M.; Popović, A. Assessment of atmospheric deposition of heavy metalsand other elements in Belgrade using the moss biomonitoring technique and neutron activation analysis. Environ. Monit. Assess. 2007, 129, 207–219. [Google Scholar] [CrossRef]
- Davy, P.K.; Trompetter, W.J.; Markwitz, A. Source Apportionment of Airborne Particles in the Auckland Region: 2010 Analysis; GNS Science: Wellington, New Zealand, 2011. [Google Scholar]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Gianini, M.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Hueglin, C. Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by positive matrix factorization. Atmos Environ. 2012, 54, 149–158. [Google Scholar] [CrossRef]
- Boamponsem, L.K.; De Freitas, C.R.; Wiliams, D. Source apportionment of air pollutants in the Greater Auckland Region of New Zealand using receptor models and elemental levels in the lichen, Parmotrema reticulatum. Atmos. Pollut. Res. 2017, 8, 101–113. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjodin, A.; Andreasson, K. Metal emissions from road traffic andthe influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Weinstein, J.P.; Hedges, S.R.; Kimbrough, S. Characterization and aerosol mass balance of PM2.5 and PM10 collected in Conakry, Guinea during the 2004 Harmattan period. Chemosphere 2010, 78, 980–988. [Google Scholar] [CrossRef]
- Kockel, F.; Mollat, H.; Walther, H.W. Erlauterungenzur Geologischen Karte der Chalkidiki und Angrenzender Gebiete 1:100000 (Nord-Griechenland); Bundesanstalt fur Geowissenschaften und Rohstoffe: Hannover, Germany, 1977; p. 119. [Google Scholar]
- Kydonakis, K.; Brun, J.-P.; Poujol, M.; Monié, P.; Chatzitheodoridis, E. Inference on the Mesozoic evolution of the north Aegean from the isotopic record of the Chalkidiki block. Tectonophysics 2016, 682, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Siron, C.R.; Thompson, J.F.H.; Baker, T.; Friedman, R.; Tsitsanis, P.; Russell, S.; Randall, S.; Mortensen, J. Magmatic and metallogenic framework of Au-Cu porphyry and polymetallic carbonate-hosted replacement deposits of the Kassandra Mining District, Northern Greece. Soc. Econ. Geol. Spec. Publ. 2016, 19, 29–55. [Google Scholar]
- Pappa, F.K.; Tsabaris, C.; Patiris, D.L.; Kokkoris, M.; Vlastou, R. Temporal investigation of radionuclides and heavy metals in a coastal mining area at Ierissos Gulf, Greece. Environ. Sci. Pollut. Res. 2019, 26, 27457–27469. [Google Scholar] [CrossRef]
- Stamatis, N.; Ioannidou, D.; Christoforidis, A.; Koutrakis, E. Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulf, North Aegean Sea, Greece. Environ. Monit. Assess. 2001, 80, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Stamatis, N.; Kamidis, N.; Pigada, P.; Sylaios, G.; Koutrakis, E. Quality Indicators and Possible Ecological Risks of Heavy Metals in the Sediments of three Semi-closed East Mediterranean Gulfs. Toxics 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic and Professional: London, UK, 1995. [Google Scholar]
- Kelepertsis, A.; Argyraki, A.; Alexakis, D. Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochem. Explor. Environ. Anal. 2006, 6, 349–355. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A.; Daftsis, E. Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey. J. Geochem. Explor. 2012, 114, 70–81. [Google Scholar] [CrossRef]
Element | Na | Mg | Al | Cl | K | Ca | Sc | Si | Ti | V | Cr | Mn | Fe | Co | Ni | Zn | As | Ce | Br | Rb | Sr | Zr | Mo | Ag | Sb | Cs | Ba | La | Tb | Hf | Ta | Th | U | Au |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 1730 | 4432 | 7886 | 145 | 6360 | 8900 | 2.12 | 78,458 | 440 | 10.08 | 24.05 | 269 | 5974 | 3.02 | 12.83 | 56.56 | 2.45 | 11.07 | 6.48 | 21.59 | 52.13 | 35.18 | 0.28 | 0.061 | 0.27 | 0.88 | 104.7 | 5.42 | 0.13 | 0.9 | 0.20 | 2.07 | 0.55 | 0.00123 |
StDev | 2266 | 2813 | 6812 | 68 | 2956 | 3236 | 1.93 | 64,318 | 327 | 6.12 | 35.58 | 200 | 5182 | 3.25 | 12.77 | 52.74 | 2.99 | 7.86 | 2.95 | 17.18 | 38.14 | 38.91 | 0.25 | 0.025 | 0.39 | 0.79 | 94.2 | 5.40 | 0.12 | 0.9 | 0.21 | 2.44 | 0.60 | 0.00216 |
median | 751 | 3600 | 5840 | 130 | 5670 | 8170 | 1.44 | 62,200 | 327 | 8.17 | 11.50 | 219 | 3770 | 1.69 | 7.26 | 37.60 | 1.44 | 9.11 | 5.85 | 15.50 | 38.20 | 21.50 | 0.23 | 0.055 | 0.20 | 0.68 | 65.9 | 3.22 | 0.08 | 0.6 | 0.12 | 0.99 | 0.30 | 0.00073 |
min | 184 | 705 | 1350 | 47 | 2160 | 3960 | 0.29 | 11,500 | 97 | 2.61 | 2.04 | 34 | 1010 | 0.43 | 1.72 | 14.60 | 0.52 | 1.87 | 1.69 | 5.11 | 12.70 | 3.29 | 0.02 | 0.018 | 0.02 | 0.17 | 15.9 | 0.50 | 0.02 | 0.1 | 0.03 | 0.28 | 0.07 | 0.00004 |
max | 9210 | 17,800 | 46,100 | 380 | 17,200 | 23,400 | 8.92 | 340,000 | 1760 | 33.40 | 222 | 1090 | 28,700 | 20.3 | 90.20 | 282.0 | 17.90 | 46.10 | 15.00 | 82.9 | 197.0 | 219.0 | 2.31 | 0.16 | 3.23 | 5.08 | 519 | 35.2 | 0.57 | 4.7 | 1.09 | 13.6 | 3.38 | 0.0172 |
Element | Na | Mg | Al | Cl | K | Ca | Sc | Si | Ti | V | Cr | Mn | Fe | Co | Ni | Zn | As | Ce | Br | Rb | Sr | Zr | Mo | Ag | Sb | Cs | Ba | La | Tb | Hf | Ta | Th | U | Au |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 1079 | 10,094 | 11,595 | 599 | 7078 | 10,088 | 2.73 | 65,120 | 670 | 21 | 118 | 652 | 9866 | 6.8 | 86 | 48 | 11.4 | 11.14 | 18 | 26 | 57 | 28.88 | 0.22 | 0.09 | 0.69 | 1.01 | 151 | 5.53 | 0.13 | 0.91 | 0.14 | 1.91 | 0.41 | 0.0097 |
StDev | 401 | 4353 | 3449 | 549 | 2827 | 3064 | 0.94 | 37,186 | 268 | 6 | 46 | 408 | 3256 | 2.4 | 30 | 12 | 3.1 | 3.65 | 16 | 5 | 24 | 11.70 | 0.08 | 0.03 | 0.24 | 0.18 | 87 | 1.80 | 0.04 | 0.38 | 0.06 | 0.59 | 0.16 | 0.0083 |
median | 901 | 11,350 | 12,050 | 353 | 6195 | 9270 | 2.48 | 56,050 | 636 | 20 | 102 | 538 | 8955 | 6.4 | 77 | 47 | 10.7 | 10.34 | 14 | 26 | 49 | 25.05 | 0.24 | 0.09 | 0.65 | 1.04 | 123 | 5.19 | 0.13 | 0.82 | 0.14 | 1.76 | 0.40 | 0.0069 |
min | 668 | 1880 | 7170 | 271 | 4910 | 6090 | 1.74 | 40,400 | 352 | 14 | 66 | 338 | 6350 | 4.5 | 52 | 35 | 7.5 | 7.39 | 5 | 19 | 35 | 16.60 | 0.05 | 0.06 | 0.32 | 0.74 | 75 | 3.65 | 0.08 | 0.54 | 0.08 | 1.27 | 0.16 | 0.0043 |
max | 1710 | 16,400 | 17,300 | 2070 | 14,800 | 16,800 | 4.12 | 168,000 | 1230 | 30 | 200 | 1760 | 14,300 | 10.6 | 138 | 72 | 15.4 | 17.50 | 59 | 34 | 104 | 50.70 | 0.33 | 0.14 | 1.03 | 1.28 | 367 | 8.78 | 0.18 | 1.71 | 0.27 | 2.92 | 0.67 | 0.0319 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betsou, C.; Diapouli, E.; Tsakiri, E.; Papadopoulou, L.; Frontasyeva, M.; Eleftheriadis, K.; Ioannidou, A. First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere 2021, 12, 208. https://doi.org/10.3390/atmos12020208
Betsou C, Diapouli E, Tsakiri E, Papadopoulou L, Frontasyeva M, Eleftheriadis K, Ioannidou A. First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere. 2021; 12(2):208. https://doi.org/10.3390/atmos12020208
Chicago/Turabian StyleBetsou, Chrysoula, Evangelia Diapouli, Evdoxia Tsakiri, Lambrini Papadopoulou, Marina Frontasyeva, Konstantinos Eleftheriadis, and Alexandra Ioannidou. 2021. "First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece" Atmosphere 12, no. 2: 208. https://doi.org/10.3390/atmos12020208
APA StyleBetsou, C., Diapouli, E., Tsakiri, E., Papadopoulou, L., Frontasyeva, M., Eleftheriadis, K., & Ioannidou, A. (2021). First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere, 12(2), 208. https://doi.org/10.3390/atmos12020208