Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Collection
2.2. Chemical Analyses
2.2.1. WSOC, HULIS-C, and HULIS
2.2.2. OC and EC
2.2.3. Water-Soluble Ions
2.2.4. Heavy Metals
2.2.5. Water-Soluble Organic Matter (WSOM)
2.3. Light Absorption Coefficients of HULIS and WSOC
2.4. PMF Analysis
2.5. Quality Assurance and Quality Control (QA/QC)
3. Results and Discussion
3.1. Comparisons of PM2.5 and Its Constituents at the Two Sites
3.2. Temporal Variations of PM, HULIS, and Other Related Parameters
3.3. Light-Absorbing Characteristics of HULIS
3.3.1. UV–Vis Spectra of HULIS
3.3.2. Optical Properties of HULIS
3.4. Correlation between HULIS-C and Chemical Species
3.4.1. Interplay between HULIS-C and Carbonaceous Components
3.4.2. Relationship between HULIS-C and SNA
3.4.3. Relationship between HULIS-C and Some Specific Tracers
3.5. PMF Analysis for Potential Sources of HULIS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baduel, C.; Voisin, D.; Jaffrezo, J.L. Comparison of analytical methods for humic like substances (HULIS) measurements in atmospheric particles. Atmos. Chem. Phys. 2009, 9, 5949–5962. [Google Scholar] [CrossRef] [Green Version]
- Hoffer, A.; Gelencsér, A. Optical properties of humic-like substances (HULIS) in. Atmos. Chem. Phys. 2006, 6, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Liu, W.; Xu, Y.; Yi, K.; Zhou, M.; Tao, S.; Liu, W. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total. Environ. 2019, 650, 277–287. [Google Scholar] [CrossRef]
- Win, M.; Tian, Z.; Zhao, H.; Xiao, K.; Peng, J.; Shang, Y.; Wu, M.; Xiu, G.; Lu, S.; Yonemochi, S.; et al. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review. J. Environ. Sci. 2018, 71, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Win, M.; Zeng, J.; Yao, C.; Zhao, M.; Xiu, G.; Lin, Y.; Xie, T.; Dai, Y.; Rao, L.; et al. A characterization of HULIS-C and the oxidative potential of HULIS and HULIS-Fe(II) mixture in PM2.5 during hazy and non-hazy days in Shanghai. Atmos. Environ. 2019, 219, 117058. [Google Scholar] [CrossRef]
- Xu, X.; Lu, X.; Li, X.; Liu, Y.; Wang, X.; Chen, H.; Chen, J.; Yang, X.; Fu, T.; Zhao, Q.; et al. ROS-generation potential of Humic-like substances (HULIS) in ambient PM2.5 in urban Shanghai: Association with HULIS concentration and light absorbance. Chemosphere 2020, 256, 127050. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, Y.; Qiu, X.; Cao, G.; Kuang, B.; Yu, J.; Hu, D. Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong. Environ. Pollut. 2019, 255, 113087. [Google Scholar] [CrossRef]
- Chen, Q.; Ikemori, F.; Higo, H.; Asakawa, D.; Mochida, M. Chemical structural characteristics of HULIS and other fractionated organic matter in urban aerosols: Results from mass spectral and FT-IR analysis. Environ. Sci. Technol. 2016, 50, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cheng, Y.; Gao, G.; Yu, J.; Hu, D. Speciation of carboxylic components in humic-like substances (HULIS) and source apportionment of HULIS in ambient fine aerosols (PM2.5) collected in Hong Kong. Environ. Sci. Pollut. Res. 2020, 27, 23172–23180. [Google Scholar] [CrossRef]
- Tan, J.; Xiang, P.; Zhou, X.; Duan, J.; Ma, Y.; He, K.; Cheng, Y.; Yu, J.; Querol, X. Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Sci. Total. Environ. 2016, 573, 1481–1490. [Google Scholar] [CrossRef]
- Tang, S.; Li, F.; Tsona, N.; Lu, C.; Wang, X.; Du, L. Aqueous-phase photooxidation of vanillic acid: A potential source of humic-like substances (HULIS). ACS Earth Space Chem. 2020, 4, 862–872. [Google Scholar] [CrossRef]
- Ye, Z.; Qu, Z.; Ma, S.; Luo, S.; Chen, Y.; Chen, H.; Chen, Y.; Zhao, Z.; Chen, M.; Ge, X. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. Sci. Total. Environ. 2019, 685, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Jung, C.H.; Kim, Y.P. Estimation of optical properties for HULIS aerosols at anmyeon Island, Korea. Atmosphere 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, T.B.; Du, L.; Nguyen, Q.T.; Nøjgaard, J.K.; Koch, C.B.; Nielsen, O.F.; Hallar, A.G.; Lowenthal, D.H.; Nekat, B.; Pinxteren, D.; et al. Chemical properties of HULIS from three different environments. J. Atmos. Chem. 2015, 72, 65–80. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Wang, L.; Bi, X.; Dong, H.; Sun, X.; Xiao, Z.; Zhang, Y.; Feng, Y. Source directional apportionment of ambient PM2.5 in urban and industrial sites at a megacity in China. Atmos. Res. 2020, 235, 104764. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, S.; Dong, H.; Wang, L.; Wang, C.; Ji, X.; Ji, M.; Yao, X.; Zhang, Z. Association between short-term exposure to particulate matter air pollution and cause-specific mortality in Changzhou, China. Environ. Res. 2019, 170, 7–15. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y.; et al. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmos. Chem. Phys. 2017, 17, 4751–4768. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Li, Q.; Ma, S.; Zhou, Q.; Gu, Y.; Su, Y.; Chen, Y.; Chen, H.; Wang, J.; Ge, X. Summertime day-night differences of PM2.5 components (inorganic ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China. Atmosphere 2017, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Liu, J.; Gu, A.; Feng, F.; Liu, Y.; Bi, C.; Xu, J.; Li, L.; Chen, H.; Chen, Y. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmos. Chem. Phys. 2017, 17, 2573–2592. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Zhang, Y.; Ma, Y.; Chen, M.; Ge, X.; Ma, Y.; Zheng, J.; Wang, Z.; Li, S. Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality. Atmos. Pollut. Res. 2016, 7, 547–556. [Google Scholar] [CrossRef]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef]
- Onasch, T.B.; Trimborn, A.; Fortner, E.C.; Jayne, J.T.; Kok, G.L.; Williams, L.R.; Davidovits, P.; Worsnop, D.R. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol. Sci. Technol. 2012, 46, 804–817. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Chen, M.; Collier, S.; Zhou, S.; Ge, X.; Xu, J.; Shi, J.; Xie, C.; Hu, J.; et al. First chemicalcharacterization of refractory black carbon aerosols and associated coatings over the Tibetan Plateau (4730 m a.s.l). Environ. Sci. Technol. 2017, 51, 14072–14082. [Google Scholar] [CrossRef]
- Wang, J.; Ge, X.; Chen, Y.; Shen, Y.; Zhang, Q.; Sun, Y.; Xu, J.; Ge, S.; Yu, H.; Chen, M. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: Insights from soot particle aerosol mass spectrometry. Atmos. Chem. Phys. 2016, 16, 9109–9127. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Li, L.; Chen, Y.; Chen, H.; Wu, D.; Wang, J.; Xie, X.; Ge, S.; Ye, Z.; Xu, J.; et al. Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environ. Pollut. 2017, 225, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Li, Q.; Liu, J.; Luo, S.; Zhou, Q.; Bi, C.; Ma, S.; Chen, Y.; Chen, H.; Li, L.; et al. Investigation of submicron aerosol characteristics in Changzhou, China: Composition, source, and comparison with co-collected PM2.5. Chemosphere 2017, 183, 176–185. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Cao, J.; Zhang, L.; Lei, Y.; Huang, Y.; Huang, R.J.; Gao, J.; Zhao, Z.; Zhu, C.; et al. Optical properties and possible sources of brown carbon in PM2.5 over Xi’an, China. Atmos. Environ. 2017, 150, 322–330. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, X.; Chen, H.; Xie, X.; Chen, Y.; Wang, J.; Ye, Z.; Bao, M.; Zhang, Y.; Chen, M. Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmos. Environ. 2018, 187, 230–240. [Google Scholar] [CrossRef]
- Wu, G.; Wan, X.; Gao, S.; Fu, P.; Yin, Y.; Li, G.; Zhang, G.; Kang, S.; Ram, K.; Cong, Z. Humic-like substances (HULIS) in aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, light absorption properties, and sources. Environ. Sci. Technol. 2018, 52, 7203–7211. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Surratt, J.; Weber, R. Sources, Composition and Absorption Ångström Exponent of light-absorbing organic components in aerosol Extracts from the Los Angeles Basin. Environ. Sci. Technol. 2013, 47, 3685–3693. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Li, M.; Jiang, M.; Qi, W. Light absorption properties of HULIS in primary particulate matter produced by crop straw combustion under different moisture contents and stacking modes. Atmos. Environ. 2018, 191, 490–499. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, Y.; Qiu, X.; Cao, G.; Fang, Y.; Wang, J.; Zhu, T.; Yu, J.; Hu, D. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing. Atmos. Chem. Phys. 2018, 18, 5607–5617. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yan, C.; Liu, Y.; Li, X.; Zhou, T.; Zheng, M. Potassium: A tracer for biomass burning in Beijing? Aerosol Air Qual. Res. 2017, 18, 2447–2459. [Google Scholar] [CrossRef] [Green Version]
- Pachon, J.E.; Weber, R.J.; Zhang, X.L.; Mulholland, J.A.; Russell, A.G. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 2013, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Qiao, T.; Li, Y.; Tang, X.; Xiu, G.; Yu, J. Temporal variations and source apportionment of Hulis-C in PM2.5 in urban Shanghai. Sci. Total. Environ. 2016, 571, 18–26. [Google Scholar] [CrossRef]
- Fan, X.; Song, J.; Peng, P. Temporal variations of the abundance and optical properties of water soluble Humic-like substances (HULIS) in PM2.5 at Guangzhou, China. Atmos. Res. 2016, 172–173, 8–15. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.; Zhang, L.; Tang, Z.; Zhang, Q.; Chen, Q.; Lei, Y.; Zeng, Y.; Xu, H.; Cao, J. PM2.5 Humic-like substances over Xi’an, China: Optical properties, chemical functional group, and source identification. Atmos. Res. 2020, 234, 104784. [Google Scholar] [CrossRef]
- Lin, P.; Huang, X.; He, L.; Zhen, Y. Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J. Aerosol Sci. 2010, 41, 74–87. [Google Scholar] [CrossRef]
- Baduel, C.; Voisin, D.; Jaffrezo, J.L. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmos. Chem. Phys. 2010, 10, 4085–4095. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, W.; Cai, T.; Fang, D.; Wang, Y.; Song, J.; Hu, M.; Zhang, Y. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 2016, 174–175, 62–69. [Google Scholar] [CrossRef]
- Fan, X.; Li, M.; Cao, T.; Cheng, C.; Li, F.; Xie, Y.; Wei, S.; Song, J.; Peng, P. Optical properties and oxidative potential of water-and alkaline-soluble brown carbon in smoke particles emitted from laboratory simulated biomass burning. Atmos. Environ. 2018, 194, 48–57. [Google Scholar] [CrossRef]
- Zou, C.; Li, M.; Cao, T.; Zhu, M.; Fan, X.; Peng, S.; Song, J.; Jiang, B.; Jia, W.; Yu, C.; et al. Comparison of solid phase extraction methods for the measurement of humic-like substances (HULIS) in atmospheric particles. Atmos. Environ. 2020, 225, 117370. [Google Scholar] [CrossRef]
- Huang, R.; Yang, L.; Cao, J.; Chen, Y.; Chen, Q.; Li, Y.; Duan, J.; Zhu, C.; Dai, W.; Wang, K.; et al. Brown carbon aerosol in urban Xi’an, Northwest China: The composition and light absorption properties. Environ. Sci. Technol. 2018, 52, 6825–6833. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, M.; Xiu, G.; Yu, J. Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China. Atmos. Environ. 2015, 123, 306–314. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Shi, Z.; Li, Y.; Gai, X.; Wang, J.; Li, H.; Wu, Y.; Zhao, X.; Chen, M.; et al. Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmos. Res. 2020, 244, 105028. [Google Scholar] [CrossRef]
- Win, M.; Zeng, J.; Yao, C.; Zhao, M.; Xiu, G.; Xie, T.; Rao, L.; Zhang, L.; Lu, H.; Liu, X.; et al. Sources of HULIS-C and its relationships with trace metals, ionic species in PM2.5 in suburban Shanghai during haze and non-haze days. J. Aerosol. Sci. 2020, 77, 63–81. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Tan, J.; Zhang, K.; Mao, J.; Duan, J.; Hu, J. Characterization of humic-like substances in PM2.5 during biomass burning episodes on Weizhou Island, China. Atmos. Environ. 2018, 191, 258–266. [Google Scholar] [CrossRef]
- Park, S.; Son, S.; Lee, S. Characterization, sources, and light absorption of fine organic aerosols during summer and winter at an urban site. Atmos. Res. 2018, 213, 370–380. [Google Scholar] [CrossRef]
- Yin, X.; Fan, G.; Liu, J.; Jiang, T.; Wang, L. Characteristics of heavy metals and persistent organic pollutants in PM2.5 in two typical industrial cities, North China. Environ. Forensics 2020, 21, 250–258. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.; Han, J.; Ying, Q.; Hopke, P.K. Sources of humic-like substances (HULIS) in PM2.5 in Beijing: Receptor modeling approach. Sci. Total Environ. 2019, 671, 765–775. [Google Scholar] [CrossRef]
Constitutents | Industrial Region | Suburban Region | ||||
---|---|---|---|---|---|---|
Fair (n = 24) | Polluted (n = 50) | All (n = 74) | Fair (n = 29) | Polluted (n = 31) | All (n = 60) | |
Average ± Std | Average ± Std | Average ± Std | Average ± Std | Average ± Std | Average ± Std | |
PM2.5 and its carbonaceous contents (μg m−3) | ||||||
PM2.5 | 52.07 ± 12.46 | 142.33 ± 58.33 | 113.06 ± 64.3 | 51.82 ± 12.90 | 116.57 ± 34.06 | 85.27 ± 41.56 |
OC | 8.55 ± 3.15 | 21.75 ± 9.54 | 17.47 ± 10.14 | 7.27 ± 2.66 | 20.20 ± 7.90 | 13.95 ± 8.80 |
EC | 2.28 ± 1.14 | 5.33 ± 3.05 | 4.34 ± 2.96 | 2.22 ± 0.83 | 4.19 ± 2.86 | 3.24 ± 2.35 |
HULIS | 3.90 ± 1.14 | 7.46 ± 2.78 | 6.30 ± 2.90 | 5.33 ± 0.90 | 9.29 ± 2.29 | 7.38 ± 2.65 |
HULIS-C | 2.03 ± 0.70 | 3.92 ± 1.46 | 3.31 ± 1.54 | 2.91 ± 0.49 | 5.02 ± 1.19 | 4.00 ± 1.40 |
WSOC | 4.39 ± 0.98 | 8.78 ± 3.34 | 7.35 ± 3.47 | 5.50 ± 0.94 | 9.77 ± 2.71 | 7.70 ± 2.96 |
Water-soluble ions (μg m−3) | ||||||
Na+ | 0.47 ± 0.22 | 0.79 ± 0.98 | 0.68 ± 0.83 | 1.55 ± 0.69 | 1.70 ± 0.51 | 1.63 ± 0.61 |
Cl− | 1.17 ± 0.64 | 2.48 ± 1.56 | 2.05 ± 1.47 | 2.28 ± 1.04 | 5.11 ± 3.52 | 3.74 ± 2.99 |
K+ | 0.25 ± 0.08 | 0.51 ± 0.21 | 0.42 ± 0.21 | 0.46 ± 0.42 | 0.86 ± 0.89 | 0.67 ± 0.73 |
NO3− | 4.99 ± 1.85 | 19.49 ± 11.35 | 14.79 ± 11.58 | 6.19 ± 2.65 | 20.46 ± 11.38 | 13.56 ± 11.00 |
SO42− | 6.58 ± 1.63 | 13.77 ± 6.32 | 11.44 ± 6.26 | 8.19 ± 2.90 | 14.86 ± 5.17 | 11.64 ± 5.38 |
NH4+ | 4.81 ± 1.32 | 9.30 ± 2.99 | 7.85 ± 3.32 | 4.67 ± 1.54 | 9.86 ± 2.82 | 7.35 ± 3.46 |
formate | 0.19 ± 0.10 | 0.45 ± 0.20 | 0.36 ± 0.21 | 0.60 ± 0.96 | 0.63 ± 0.59 | 0.61 ± 0.79 |
oxalate | 0.20 ± 0.13 | 0.37 ± 0.21 | 0.32 ± 0.20 | 0.39 ± 0.99 | 0.42 ± 0.19 | 0.41 ± 0.70 |
Contributions | ||||||
HULIS/HULIS-C | 1.95 ± 0.15 | 1.91 ± 0.13 | 1.92 ± 0.14 | 1.83 ± 0.06 | 1.85 ± 0.10 | 1.84 ± 0.08 |
HULIS-C/WSOC (%) | 45.8 ± 8.5 | 46.1 ± 9.8 | 46.0 ± 9.4 | 53.0 ± 2.3 | 52.0 ± 4.4 | 52.5 ± 3.5 |
HULIS-C/OC (%) | 24.5 ± 5.2 | 19.4 ± 6.1 | 21.1 ± 6.3 | .43.9 ± 13.3 | 27.0 ± 7.4 | 35.1 ± 13.6 |
HULIS/PM2.5 (%) | 7.6 ± 1.8 | 5.6 ± 1.9 | 6.3 ± 2.1 | 10.7 ± 2.0 | 8.2 ± 1.4 | 9.4 ± 2.1 |
OC/EC | 4.47 ± 2.06 | 5.06 ± 3.03 | 4.87 ± 2.77 | 3.57 ± 1.51 | 6.28 ± 3.23 | 4.97 ± 2.89 |
Optical Parameters | Industrial Region | Suburban Region | |||||
---|---|---|---|---|---|---|---|
Fair (n = 24) | Polluted (n = 50) | All (n = 74) | Fair (n = 29) | Polluted (n = 31) | All (n = 60) | ||
Mean ± Std | Mean ± Std | ||||||
WSOC | MAE280(m2 g−1) | 2.68 ± 0.73 | 2.85 ± 0.83 | 2.79 ± 0.81 | 2.07 ± 0.64 | 3.01 ± 0.88 | 2.55 ± 0.90 |
MAE365(m2 g−1) | 0.73 ± 0.20 | 0.74 ± 0.24 | 0.74 ± 0.23 | 0.64 ± 0.31 | 0.88 ± 0.27 | 0.76 ± 0.31 | |
AAE(300–400) | 5.11 ± 0.52 | 5.48 ± 0.55 | 5.36 ± 0.57 | 5.02 ± 1.05 | 5.09 ± 0.67 | 5.05 ± 0.88 | |
E2/E3 | 5.03 ± 0.84 | 5.90 ± 1.82 | 5.61 ± 1.62 | 4.86 ± 1.03 | 5.14 ± 1.19 | 5.01 ± 1.12 | |
HULIS-C | MAE280(m2 g−1) | 1.67 ± 0.65 | 2.06 ± 0.76 | 1.93 ± 0.75 | 1.29 ± 0.54 | 2.17 ± 0.68 | 1.74 ± 0.76 |
MAE365(m2 g−1) | 0.45 ± 0.21 | 0.56 ± 0.22 | 0.52 ± 0.22 | 0.56 ± 0.22 | 0.70 ± 0.22 | 0.63 ± 0.23 | |
AAE(300–400) | 5.18 ± 0.58 | 5.45 ± 0.62 | 5.36 ± 0.62 | 4.55 ± 2.00 | 5.14 ± 1.70 | 4.85 ± 1.87 | |
E2/E3 | 5.47 ± 0.90 | 5.83 ± 1.08 | 5.71 ± 1.04 | 4.67 ± 2.01 | 5.31 ± 1.45 | 5.00 ± 1.77 |
Species | HULIS-C | Formate | Oxalate | Kb | C2H4O2+ | C3H5O2+ | C4H9+ | C4H7+ | CO2+ | C2H4O+ |
---|---|---|---|---|---|---|---|---|---|---|
HULIS-C | 1 | |||||||||
formate | 0.856 | 1 | ||||||||
oxalate | 0.481 | 0.426 | 1 | |||||||
Kb | 0.817 | 0.744 | 0.396 | 1 | ||||||
C2H4O2+ | 0.736 | 0.737 | 0.303 | 0.711 | 1 | |||||
C3H5O2+ | 0.710 | 0.738 | 0.339 | 0.658 | 0.982 | 1 | ||||
C4H9+ | 0.699 | 0.626 | 0.374 | 0.597 | 0.897 | 0.920 | 1 | |||
C4H7+ | 0.718 | 0.693 | 0.397 | 0.605 | 0.914 | 0.949 | 0.978 | 1 | ||
CO2+ | 0.533 | 0.680 | 0.053 | 0.470 | 0.816 | 0.849 | 0.716 | 0.783 | 1 | |
C2H4O+ | 0.509 | 0.329 | 0.483 | 0.465 | 0.640 | 0.614 | 0.691 | 0.637 | 0.170 | 1 |
Species | HULIS-C | Formate | Oxalate | Kb | C2H4O2+ | C3H5O2+ | C4H9+ | C4H7+ | CO2+ | C2H4O+ |
---|---|---|---|---|---|---|---|---|---|---|
HULIS-C | 1 | |||||||||
formate | −0.054 | 1 | ||||||||
oxalate | 0.026 | 0.824 | 1 | |||||||
Kb | 0.289 | 0.031 | −0.077 | 1 | ||||||
C2H4O2+ | 0.253 | 0.403 | 0.013 | 0.315 | 1 | |||||
C3H5O2+ | 0.435 | 0.198 | 0.069 | 0.342 | 0.782 | 1 | ||||
C4H9+ | 0.652 | 0.063 | 0.010 | 0.317 | 0.662 | 0.934 | 1 | |||
C4H7+ | 0.660 | 0.078 | 0.044 | 0.274 | 0.624 | 0.949 | 0.973 | 1 | ||
CO2+ | 0.489 | 0.258 | 0.051 | 0.449 | 0.878 | 0.947 | 0.874 | 0.861 | 1 | |
C2H4O+ | 0.312 | 0.298 | 0.010 | 0.243 | 0.937 | 0.812 | 0.719 | 0.695 | 0.849 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Sun, N.; Li, X.; Zhao, Z.; Ma, S.; Huang, H.; Ye, Z.; Ge, X. Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China. Atmosphere 2021, 12, 276. https://doi.org/10.3390/atmos12020276
Tao Y, Sun N, Li X, Zhao Z, Ma S, Huang H, Ye Z, Ge X. Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China. Atmosphere. 2021; 12(2):276. https://doi.org/10.3390/atmos12020276
Chicago/Turabian StyleTao, Ye, Ning Sun, Xudong Li, Zhuzi Zhao, Shuaishuai Ma, Hongying Huang, Zhaolian Ye, and Xinlei Ge. 2021. "Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China" Atmosphere 12, no. 2: 276. https://doi.org/10.3390/atmos12020276
APA StyleTao, Y., Sun, N., Li, X., Zhao, Z., Ma, S., Huang, H., Ye, Z., & Ge, X. (2021). Chemical and Optical Characteristics and Sources of PM2.5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China. Atmosphere, 12(2), 276. https://doi.org/10.3390/atmos12020276