Climate Response of Oxygen Isotopic Compositions in Tree-Ring Cellulose in Java: Evaluation Using a Proxy System Model
Abstract
:1. Introduction
2. Experiments
2.1. Study Site
2.2. Tree-Ring Cellulose Oxygen Isotope Data
2.3. Proxy System Model of Tree-Ring Cellulose Oxygen Isotopic Compositions
2.4. Input Data to the Proxy System Model
3. Results and Discussion
4. Conclusions
- Simulated values of cellulose δ18O corresponded to the measured values (except for a few peaks) with a correlation coefficient of r = 0.61, demonstrating that the model of this study can reproduce the actual isotopic compositions of teak cellulose.
- Characteristic seasonal rainfall patterns were recognized in years under/overestimated by the model, and thus the growth duration could slightly shift according to the seasonal rainfall pattern.
- Model calculations assuming that the growth duration is shifted earlier or later than usual matched with the measured peaks within the expected range of error, indicating that tree-ring cellulose δ18O is also influenced by subtle shifts of growth duration because of the change of seasonal rainfall pattern.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeBoer, H.J. Tree ring measurements and weather fluctuations in Java from A.D. 1514. Proc. K. Ned. Akad. Van Wet. 1951, 54, 194–209. [Google Scholar]
- D’Arrigo, R.; Wilson, R.; Palmer, J.; Krusic, P.; Curtis, A.; Sakulich, J.; Bijaksana, S.; Zulaikah, S.; Ngkoimani, L.O. Monsoon drought over Java, Indonesia, during the past two centuries. Geophys. Res. Lett. 2006, 33, L04709. [Google Scholar] [CrossRef] [Green Version]
- Bijaksana, S.; Ngkoimani, L.O.; D’Arrigo, R.D.; Krusic, P.; Palmer, J.; Sakulich, J.; Zulaikah, S. Status of tree-ring research from teak (Tectona grandis) for climate studies. J. Geofis. 2007, 8, 2–7. [Google Scholar]
- Schollaen, K.; Heinrich, I.; Neuwirth, B.; Krusic, P.J.; D’Arrigo, R.D.; Karyanto, O.; Helle, G. Multiple tree-ring chronologies (ring width, δ 13 C and δ 18 O) reveal dry and rainy season signals of rainfall in Indonesia. Quat. Sci. Rev. 2013, 73, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Poussart, P.F.; Evans, M.N.; Schrag, D.P. Resolving seasonality in tropical trees: Multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet. Sci. Lett. 2004, 218, 301–316. [Google Scholar] [CrossRef]
- Hisamochi, R.; Watanabe, Y.; Sano, M.; Nakatsuka, T.; Kurita, N.; Matsuo-Ueda, M.; Yamamoto, H.; Tazuru, S.; Sugiyama, J.; Subiyanto, B.; et al. Cellulose oxygen isotopic composition of teak (Tectona grandis) collected from Java Island: A tool for dendrochronological and dendroclimatological analysis. Dendrochronologia 2018, 52, 80–86. [Google Scholar] [CrossRef]
- Roden, J.S.; Lin, G.; Ehleringer, J.R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 2000, 64, 21–35. [Google Scholar] [CrossRef]
- Kurita, N.; Nakatsuka, T.; Ohnishi, K.; Mitsutani, T.; Kumagai, T. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Kurita, N.; Ichiyanagi, K.; Matsumoto, J.; Yamanaka, M.D.; Ohata, T. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor. 2009, 102, 113–122. [Google Scholar] [CrossRef]
- White, J.W.C.; Cook, E.R.; Lawrence, J.R.; Broecker, W.S. The D/H ratio of sap in trees: Implications for water sources and tree ring D/H ratios. Geochim. Cosmochim. Acta 1985, 49, 237–246. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Craig, H.; Gordon, L.I. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures; Tongiorgi, E., Ed.; Università di Pisa. Laboratorio di Geologia Nucleare: Pisa, Italy, 1965; pp. 9–130. [Google Scholar]
- Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. Comparison of modeled and observed environmental-influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 1991, 96, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Dongmann, G.; Nürnberg, H.W.; Förstel, H.; Wagener, K. On the enrichment of H218O in the leaves of transpiring plants. Radiat. Environ. Biophys. 1974, 11, 41–52. [Google Scholar] [CrossRef]
- Bottinga, Y.; Craig, H. Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmospheric CO2. Earth Planet. Sci. Lett. 1969, 5, 285–295. [Google Scholar] [CrossRef]
- Evans, M.N. Toward forward modeling for paleoclimatic proxy signal calibration: A case study with oxygen isotopic composition of tropical woods. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; Barbour, M.M.; Henry, B.K. Interpretation of oxygen isotope composition of leaf material. In Stable Isotopes; Griffiths, H., Ed.; BIOS Scientific Pub. Ltd.: Oxford, UK, 1998; pp. 27–62. [Google Scholar]
- Managave, S.R.; Sheshshayee, M.S.; Bhattacharyya, A.; Ramesh, R. Intra-annual variations of teak cellulose δ18O In Kerala, India: Implications to the reconstruction of past summer and winter monsoon rains. Clim. Dyn. 2011, 37, 555–567. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Lloyd, J. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In Stable Isotopes and Plant Carbon–Water Relations; Ehleringer, J.R., Hall, A.E., Farquhar, G.D., Eds.; Academic Press: Cambridge, MA, USA, 1993; pp. 47–70. [Google Scholar]
- Cuntz, M.; Ogée, J.; Farquhar, G.D.; Peylin, P.; Cernusak, L.A. Modeling advection and diffusion of water isotopologues in leaves. Plant Cell Environ. 2007, 30, 892–909. [Google Scholar] [CrossRef]
- Kahmen, A.; Simonin, K.; Tu, K.; Goldsmith, G.R.; Dawson, T.E. The influence of species and growing conditions on the 18-O enrichment of leaf water and its impact on ‘effective path length’. New Phytol. 2009, 184, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, L.S.L.; DeNiro, M.J. Biogeochemical implications of the isotopic equilibrium fractionating factor between oxygen atoms of acetone and water. Geochim. Cosmochim. Acta 1983, 47, 2271–2274. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; KamahoriI, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Kanamitsu, M. Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Weather Rev. 2013, 141, 3087–3101. [Google Scholar] [CrossRef]
- Yoshimura, K. Stable water isotopes in climatology, meteorology, and hydrology: A review. J. Meteorol. Soc. Japan 2015, 93. [Google Scholar] [CrossRef] [Green Version]
- Hamada, J.-I.; Yamanaka, M.D.; Matsumoto, J.; Fukao, S.; Winarso, P.A.; Sribimawati, T. Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteorol. Soc. Japan 2002, 80, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Muangsong, C.; Cai, B.; Pumijumnong, N.; Hu, C.; Lei, G. Intra-seasonal variability of teak tree-ring cellulose δ18O from northwestern Thailand: A potential proxy of Thailand summer monsoon rainfall. Holocene 2016, 26, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zheng, H.; Nakatsuka, T.; Sano, M.; Li, Z.; Ge, J. Inter- and intra-annual tree-ring cellulose oxygen isotope variability in response to precipitation in Southeast China. Trees 2016, 30, 785–794. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hisamochi, R.; Watanabe, Y.; Kurita, N.; Tagami, T. Climate Response of Oxygen Isotopic Compositions in Tree-Ring Cellulose in Java: Evaluation Using a Proxy System Model. Atmosphere 2021, 12, 310. https://doi.org/10.3390/atmos12030310
Hisamochi R, Watanabe Y, Kurita N, Tagami T. Climate Response of Oxygen Isotopic Compositions in Tree-Ring Cellulose in Java: Evaluation Using a Proxy System Model. Atmosphere. 2021; 12(3):310. https://doi.org/10.3390/atmos12030310
Chicago/Turabian StyleHisamochi, Ryo, Yumiko Watanabe, Naoyuki Kurita, and Takahiro Tagami. 2021. "Climate Response of Oxygen Isotopic Compositions in Tree-Ring Cellulose in Java: Evaluation Using a Proxy System Model" Atmosphere 12, no. 3: 310. https://doi.org/10.3390/atmos12030310
APA StyleHisamochi, R., Watanabe, Y., Kurita, N., & Tagami, T. (2021). Climate Response of Oxygen Isotopic Compositions in Tree-Ring Cellulose in Java: Evaluation Using a Proxy System Model. Atmosphere, 12(3), 310. https://doi.org/10.3390/atmos12030310