Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Data Sources
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Ethical Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemmes, J.H.; Winkler, K.C.; Kool, S.M. Virus survival as a seasonal factor in influenza and poliomyelitis. Antonie Leeuwenhoek 1962, 28, 221–233. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Serrano-Aroca, Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Sci. Total Environ. 2020, 728, 138811. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226. [Google Scholar] [CrossRef] [PubMed]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 2020, 3, e2011834. [Google Scholar] [CrossRef]
- Tobías, A.; Molina, T. Is temperature reducing the transmission of COVID-19? Environ. Res. 2020, 186, 109553. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Adhikari, A.; Yin, J. Short-Term Effects of Ambient Ozone, PM2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York. Int. J. Environ. Res. Public Health 2020, 17, 4047. [Google Scholar] [CrossRef]
- Pyankov, O.V.; Bodnev, S.A.; Pyankova, O.G.; Agranovski, I.E. Survival of aerosolized coronavirus in the ambient air. J. Aerosol Sci. 2018, 115, 158–163. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, M.; Lv, J.; Shi, T.; Liu, P.; Wu, Y.; Feng, W.; He, W.; Guo, P. Interactions between ambient air pollutants and temperature on emergency department visits: Analysis of varying-coefficient model in Guangzhou, China. Sci. Total Environ. 2019, 668, 825–834. [Google Scholar] [CrossRef]
- Qi, H.; Xiao, S.; Shi, R.; Ward, M.P.; Chen, Y.; Tu, W.; Su, Q.; Wang, W.; Wang, X.; Zhang, Z. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020, 728, 138778. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Rubolini, D. Climate affects global patterns of CoViD-19 early outbreak dynamics. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Shabnam, S.; Erzurumluoglu, A.M. Temperature, humidity, and wind speed are associated with lower Covid-19 incidence. medRxiv 2020. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Cardoso, R.M.; Miranda, P.M.A.; De Medeiros, J.; Belo-Pereira, M.; Espirito-Santo, F. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim. Dyn. 2012, 39, 2497–2522. [Google Scholar] [CrossRef]
- Engels, J.M.; Diehr, P. Imputation of missing longitudinal data: A comparison of methods. J. Clin. Epidemiol. 2003, 56, 968–976. [Google Scholar] [CrossRef]
- Shao, J.; Zhong, B. Last observation carry-forward and last observation analysis. Stat. Med. 2003, 22, 2429–2441. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.M.; Al Bakri Abdullah, M.M.; Yahaya, A.S.; Ramli, N.A. Comparison of Linear Interpolation Method and Mean Method to Replace the Missing Values in Environmental Data Set. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2015; Volume 803, pp. 278–281. [Google Scholar]
- Zhang, Z. Missing data imputation: Focusing on single imputation. Ann. Transl. Med. 2016, 4, 9. [Google Scholar]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Schuit, M.; Ratnesar-Shumate, S.; Yolitz, J.; Williams, G.; Weaver, W.; Green, B.; Miller, D.; Krause, M.; Beck, K.; Wood, S.; et al. Airborne SARS-CoV-2 Is Rapidly Inactivated by Simulated Sunlight. J. Infect. Dis. 2020, 222, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, X.-J.; Guan, Y.-J. Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infect. Control. Hosp. Epidemiol. 2020, 41, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Greene, W. Functional forms for the negative binomial model for count data. Econ. Lett. 2008, 99, 585–590. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [Green Version]
- Reuters. Coronavirus Incubation Could Be as Long as 27 Days, Chinese Provincial Government Says. Reuters. 2020. Available online: https://www.reuters.com/article/us-china-health-incubation/coronavirus-incubation-could-be-as-long-as-27-days-chinese-provincial-government-says-idUSKCN20G06W (accessed on 21 July 2020).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, S.; Yakutcan, U.; Demir, E. A statistical Assessment of Association between Meteorological Parameters and COVID-19 Pandemic in 10 Countries: The Devil Is in the Detail. Available online: https://www.researchgate.net/publication/342313160 (accessed on 21 July 2020).
- Huang, C.-H.; Lin, H.-C.; Tsai, C.-D.; Huang, H.-K.; Lian, I.-B.; Chang, C.-C. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome. Sci. Rep. 2017, 7, srep44004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Xiong, X.; Liang, F.; Tian, L.; Liu, W.; Wang, Z.; Pan, X. The interactive effects between air pollution and meteorological factors on the hospital outpatient visits for atopic dermatitis in Beijing, China: A time-series analysis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Kousha, T.; Rowe, B.H. Ambient ozone and emergency department visits due to lower respiratory condition. Int. J. Occup. Med. Environ. Health 2014, 27, 50–59. [Google Scholar] [CrossRef] [Green Version]
PM2.5 (µg/m3) | Ozone (ppb) | Wind Speed (m/s) | Temperature (°F) | Cloud (%) | Relative Humidity (%) | Absolute Humidity (g/cm3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lag days | IRR | p | IRR | p | IRR | p | IRR | p | IRR | p | IRR | p | IRR | p |
0 | 1.00 | 0.976 | 0.99 | 0.407 | 1.01 | 0.365 | 1.01 | 0.540 | 1.00 | 0.952 | 1.00 | 0.962 | 1.01 | 0.739 |
1 | 1.03 | 0.509 | 0.97 | 0.300 | 1.01 | 0.602 | 1.01 | 0.685 | 1.00 | 0.642 | 1.00 | 0.953 | 1.02 | 0.657 |
2 | 1.05 | 0.433 | 0.95 | 0.109 | 1.00 | 0.914 | 0.99 | 0.720 | 1.00 | 0.712 | 1.01 | 0.356 | 1.03 | 0.704 |
3 | 1.11 | 0.138 | 0.96 | 0.384 | 0.98 | 0.530 | 1.00 | 0.991 | 1.00 | 0.791 | 0.99 | 0.571 | 0.99 | 0.919 |
4 | 1.09 | 0.319 | 0.95 | 0.461 | 1.02 | 0.000 | 0.99 | 0.003 | 0.99 | 0.143 | 0.96 | 0.025 | 0.83 | 0.000 |
5 | 1.01 | 0.128 | 1.01 | 0.034 | 1.03 | 0.000 | 1.04 | 0.000 | 0.99 | 0.000 | 0.93 | 0.000 | 0.91 | 0.000 |
6 | 1.04 | 0.000 | 1.00 | 0.562 | 1.01 | 0.217 | 1.05 | 0.000 | 1.00 | 0.000 | 0.98 | 0.000 | 0.99 | 0.435 |
7 | 1.03 | 0.035 | 1.01 | 0.265 | 1.00 | 0.812 | 1.12 | 0.000 | 0.99 | 0.000 | 0.97 | 0.000 | 0.85 | 0.000 |
8 | 1.08 | 0.000 | 0.93 | 0.000 | 1.02 | 0.055 | 1.11 | 0.000 | 0.99 | 0.000 | 0.98 | 0.000 | 0.95 | 0.151 |
9 | 0.95 | 0.002 | 0.94 | 0.000 | 1.08 | 0.000 | 1.06 | 0.000 | 0.99 | 0.000 | 0.96 | 0.000 | 0.75 | 0.000 |
10 | 0.95 | 0.006 | 1.14 | 0.000 | 1.05 | 0.000 | 1.09 | 0.000 | 0.98 | 0.000 | 0.94 | 0.000 | 0.80 | 0.000 |
11 | 0.86 | 0.000 | 1.06 | 0.000 | 1.07 | 0.000 | 1.08 | 0.000 | 0.99 | 0.000 | 0.96 | 0.000 | 0.88 | 0.000 |
12 | 0.81 | 0.000 | 1.11 | 0.000 | 1.11 | 0.000 | 1.07 | 0.000 | 0.98 | 0.000 | 0.94 | 0.000 | 0.83 | 0.000 |
13 | 0.80 | 0.000 | 1.09 | 0.000 | 1.03 | 0.000 | 1.06 | 0.000 | 0.99 | 0.000 | 0.96 | 0.000 | 0.83 | 0.000 |
14 | 0.74 | 0.000 | 0.94 | 0.001 | 1.00 | 0.722 | 1.09 | 0.000 | 0.99 | 0.005 | 0.97 | 0.000 | 0.82 | 0.000 |
15 | 0.70 | 0.000 | 1.11 | 0.000 | 1.00 | 0.842 | 1.24 | 0.000 | 1.02 | 0.000 | 1.00 | 0.547 | 1.83 | 0.000 |
16 | 1.28 | 0.000 | 1.16 | 0.000 | 1.00 | 0.766 | 1.31 | 0.000 | 0.98 | 0.000 | 0.94 | 0.000 | 0.90 | 0.097 |
17 | 0.76 | 0.000 | 1.83 | 0.004 | 1.07 | 0.000 | 1.28 | 0.000 | 0.97 | 0.000 | 0.93 | 0.000 | 0.76 | 0.000 |
18 | 0.65 | 0.192 | 1.99 | 0.001 | 1.17 | 0.000 | 0.96 | 0.003 | 0.99 | 0.000 | 0.98 | 0.000 | 0.63 | 0.000 |
19 | 0.73 | 0.318 | 1.98 | 0.003 | 1.06 | 0.009 | 0.97 | 0.014 | 0.99 | 0.008 | 0.97 | 0.000 | 0.65 | 0.000 |
20 | 0.52 | 0.032 | 1.12 | 0.000 | 1.07 | 0.000 | 1.06 | 0.000 | 0.98 | 0.000 | 0.95 | 0.000 | 0.75 | 0.000 |
21 | 0.37 | 0.001 | 2.24 | 0.001 | 1.26 | 0.000 | 1.16 | 0.000 | 0.98 | 0.000 | 0.97 | 0.000 | 0.86 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, A.; Yin, J. Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York. Atmosphere 2021, 12, 357. https://doi.org/10.3390/atmos12030357
Adhikari A, Yin J. Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York. Atmosphere. 2021; 12(3):357. https://doi.org/10.3390/atmos12030357
Chicago/Turabian StyleAdhikari, Atin, and Jingjing Yin. 2021. "Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York" Atmosphere 12, no. 3: 357. https://doi.org/10.3390/atmos12030357
APA StyleAdhikari, A., & Yin, J. (2021). Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York. Atmosphere, 12(3), 357. https://doi.org/10.3390/atmos12030357