Loading Rates of Dust and Bioburden in Dwellings in an Inland City of Southern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Studied Dwellings
2.2. Settleable Dust Sampling and Quantification
2.3. Electrostatic Dust Cloth Extraction and Bioburden Analyses
Aspergillus Sections Targeted | Sequences | Reference |
---|---|---|
Flavi (Toxigenic Strains) | ||
Forward Primer | 5′-GTCCAAGCAACAGGCCAAGT-3′ | |
Reverse Primer | 5′-TCGTGCATGTTGGTGATGGT-3′ | [33] |
Probe | 5′-TGTCTTGATCGGCGCCCG-3′ | |
Fumigati | ||
Forward Primer | 5′-CGCGTCCGGTCCTCG-3′ | |
Reverse Primer | 5′-TTAGAAAAATAAAGTTGGGTGTCGG-3′ | [34] |
Probe | 5′-TGTCACCTGCTCTGTAGGCCCG-3′ | |
Circumdati | ||
Forward Primer | 5′-CGGGTCTAATGCAGCTCCAA-3′ | |
Reverse Primer | 5′-CGGGCACCAATCCTTTCA-3′ | [35] |
Probe | 5′-CGTCAATAAGCGCTTTT-3′ | |
Nidulantes | ||
Forward Primer | 5′–CGGCGGGGAGCCCT-3′ | |
Reverse Primer | 5′–CCATTGTTGAAAGTTTTGACTGATcTTA-3′ | [36] |
Probe | 5′–AGACTGCATCACTCTCAGGCATGAAGTTCAG-3′ |
2.4. Statistical Analysis
3. Results and Discussion
3.1. Dust Loading Rates
3.2. Bacterial Contamination Assessment
3.3. Fungal Contamination Assessment
3.4. Screening of Azole-Resistance
3.5. Molecular Assessment
3.6. Correlation Analysis
3.7. Comparison between Sampling Locations
3.8. Importance of Housing Characteristics for Bacterial Counts, Fungal Counts and Azoles Screening
4. Conclusions
- Higher settleable dust loadings and fungal contamination levels in dwellings with pets;
- Fungal species considered indicators of harmful fungal contamination, namely Aspergillus sections (Fumigati, Nidulantes and Circumdati);
- The presence in dwellings of Aspergillus sp. (namely, Aspergillus section Candidi) with reduced susceptibility to azoles, thus, with potential risk for immunocompromised inhabitants or individuals with respiratory diseases, corroborating the need to assess the prevalence of azole resistance also in indoor environments;
- Specific housing typologies, such as larger dimensions of the rooms and higher ceiling heights, leading to less fungal counts;
- Specific housing characteristics favoring the development of microbial communities in the indoor air, namely heating system, cleaning frequency and pets, in the case of bacterial contamination, and ventilation type, heating system, house type, rugs and cleaning frequency with regard to fungal contamination.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mentese, S.; Arisoy, M.; Rad, A.Y.; Güllü, G. Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. CLEAN Soil Air Water 2009, 37, 487–493. [Google Scholar] [CrossRef]
- Ayanbimpe, G.M.; Wapwera, S.D.; Kuchin, D. Indoor air mycoflora of residential dwellings in Jos metropolis. Afr. Health Sci. 2010, 10, 172–176. [Google Scholar] [PubMed]
- Viegas, C.; Almeida, B.; Dias, M.; Caetano, L.; Carolino, E.; Gomes, A.; Faria, T.; Martins, V.; Marta Almeida, S. Assessment of Children’s Potential Exposure to Bioburden in Indoor Environments. Atmosphere 2020, 11, 993. [Google Scholar] [CrossRef]
- Viegas, C.; Dias, M.; Almeida, B.; Vicente, E.; Caetano, L.A.; Carolino, E.; Alves, C. Settleable Dust and Bioburden in Portuguese Dwellings. Microorganisms 2020, 8, 1799. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, G.T.; Walter, M.; Mitchell, H.; Kattan, M.; Morgan, W.J.; Gruchalla, R.S.; Pongracic, J.A.; Smartt, E.; Stout, J.W.; Evans, R., III. Airborne fungi in the homes of children with asthma in low-income urban communities: The Inner-City Asthma Study. J. Allergy Clin. Immunol. 2004, 114, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Tischer, C.; Chen, C.-M.; Heinrich, J. Association between domestic mould and mould components, and asthma and allergy in children: A systematic review. Eur. Respir. J. 2011, 38, 812–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef] [Green Version]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.J.; van der Lee, H.A.; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E. Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus. PLoS ONE 2012, 7, e31801. [Google Scholar] [CrossRef] [Green Version]
- Prigitano, A.; Venier, V.; Cogliati, M.; De Lorenzis, G.; Esposto, M.C.; Tortorano, A.M. Azole-resistant Aspergillus fumigatus in the environment of northern Italy, May 2011 to June 2012. Eurosurveillance 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Sabino, R.; Verissimo, C.; Parada, H.; Brandao, J.; Viegas, C.; Carolino, E.; Clemons, K.V.; Stevens, D.A. Molecular screening of 246 Portuguese Aspergillus isolates among different clinical and environmental sources. Med. Mycol. 2014, 52, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Dauchy, C.; Bautin, N.; Nseir, S.; Reboux, G.; Wintjens, R.; Le Rouzic, O.; Sendid, B.; Viscogliosi, E.; Le Pape, P.; Arendrup, M.C.; et al. Emergence of Aspergillus fumigatus azole resistance in azole-naïve patients with chronic obstructive pulmonary disease and their homes. Indoor Air 2018, 28, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Simões, D.; Aranha Caetano, L.; Veríssimo, C.; Viegas, C.; Sabino, R. Aspergillus collected in specific indoor settings: Their molecular identification and susceptibility pattern. Int. J. Environ. Health Res. 2019, 1–10. [Google Scholar] [CrossRef]
- Leppänen, H.K.; Täubel, M.; Jayaprakash, B.; Vepsäläinen, A.; Pasanen, P.; Hyvärinen, A. Quantitative assessment of microbes from samples of indoor air and dust. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 231–241. [Google Scholar] [CrossRef]
- Park, J.-H.; Sulyok, M.; Lemons, A.R.; Green, B.J.; Cox-Ganser, J.M. Characterization of fungi in office dust: Comparing results of microbial secondary metabolites, fungal internal transcribed spacer region sequencing, viable culture and other microbial indices. Indoor Air 2018, 28, 708–720. [Google Scholar] [CrossRef]
- Bouillard, L.; Michel, O.; Dramaix, M.; Devleeschouwer, M. Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Ann. Agric. Environ. Med. 2005, 12, 187–192. [Google Scholar] [PubMed]
- Stamatelopoulou, A.; Pyrri, I.; Asimakopoulos, D.N.; Maggos, T. Indoor air quality and dustborne biocontaminants in bedrooms of toddlers in Athens, Greece. Build. Environ. 2020, 173, 106756. [Google Scholar] [CrossRef]
- Basinas, I.; Schlünssen, V.; Heederik, D.; Sigsgaard, T.; Smit, L.A.M.; Samadi, S.; Omland, Ø.; Hjort, C.; Madsen, A.M.; Skov, S.; et al. Sensitisation to common allergens and respiratory symptoms in endotoxin exposed workers: A pooled analysis. Occup. Environ. Med. 2012, 69, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Krop, E.J.M.; Jacobs, J.H.; Sander, I.; Raulf-Heimsoth, M.; Heederik, D.J.J. Allergens and β-Glucans in Dutch Homes and Schools: Characterizing Airborne Levels. PLoS ONE 2014, 9, e88871. [Google Scholar] [CrossRef]
- Rocchi, S.; Reboux, G.; Frossard, V.; Scherer, E.; Valot, B.; Laboissière, A.; Zaros, C.; Vacheyrou, M.; Gillet, F.; Roussel, S.; et al. Microbiological characterization of 3193 French dwellings of Elfe cohort children. Sci. Total Environ. 2015, 505, 1026–1035. [Google Scholar] [CrossRef]
- Spilak, M.P.; Madsen, A.M.; Knudsen, S.M.; Kolarik, B.; Hansen, E.W.; Frederiksen, M.; Gunnarsen, L. Impact of dwelling characteristics on concentrations of bacteria, fungi, endotoxin and total inflammatory potential in settled dust. Build. Environ. 2015, 93, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Dias, M.; Monteiro, A.; Faria, T.; Lage, J.; Carolino, E.; Caetano, L.A.; Gomes, A.Q.; Almeida, S.M.; Verde, S.C.; et al. Bioburden in sleeping environments from Portuguese dwellings. Environ. Pollut. 2021, 273, 116417. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Schmechel, D.; Chen, B.T.; Lindsley, W.G.; Peccia, J. Comparison of quantitative airborne fungi measurements by active and passive sampling methods. J. Aerosol Sci. 2011, 42, 499–507. [Google Scholar] [CrossRef]
- Córdoba Gamboa, L.; Solano Diaz, K.; Ruepert, C.; van Wendel de Joode, B. Passive monitoring techniques to evaluate environmental pesticide exposure: Results from the Infant’s Environmental Health study (ISA). Environ. Res. 2020, 184, 109243. [Google Scholar] [CrossRef]
- Viegas, C.; Santos, P.; Almeida, B.; Monteiro, A.; Carolino, E.; Gomes, A.Q.; Viegas, S. Electrostatic dust collector: A passive screening method to assess occupational exposure to organic dust in primary health care centers. Air Qual. Atmos. Health 2019, 12, 573–583. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; Monteiro, A.; Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. A Novel Multi-Approach Protocol for the Characterization of Occupational Exposure to Organic Dust—Swine Production Case Study. Toxics 2017, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Gershwin, M.E. Indoor Air Quality and Human Health: Truth vs Mass Hysteria. Clin. Rev. Allergy Immunol. 2004, 27, 219–240. [Google Scholar] [CrossRef]
- Aydogdu, H.; Asan, A.; Otkun, M.T. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ. Monit. Assess. 2010, 164, 53–66. [Google Scholar] [CrossRef]
- Le Cann, P.; Bonvallot, N.; Glorennec, P.; Deguen, S.; Goeury, C.; Le Bot, B. Indoor environment and children’s health: Recent developments in chemical, biological, physical and social aspects. Int. J. Hyg. Environ. Health 2011, 215, 1–18. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Rodriguez-Tudela, J.-L.; Lass-Flörl, C.; Cuenca-Estrella, M.; Donnelly, J.P.; Hope, W. EUCAST technical note on anidulafungin. Clin. Microbiol. Infect. 2011, 17, E18–E20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.; Dias, M.; Carolino, E.; Sabino, R. Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence. Atmosphere 2020, 12, 23. [Google Scholar] [CrossRef]
- Mayer, Z.; Bagnara, A.; Färber, P.; Geisen, R. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int. J. Food Microbiol. 2003, 82, 143–151. [Google Scholar] [CrossRef]
- Cruz-Perez, P.; Buttner, M.P.; Stetzenbach, L.D. Specific detection of Stachybotrys chartarum in pure culture using quantitative polymerase chain reaction. Mol. Cell. Probes 2001, 15, 129–138. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; de Oliveira, A.C.; Caetano, L.A.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Soszczyńska, E.; Viegas, S. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res. 2017, 33, 285–295. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Microbiological and Chemical Exposure Assessment, EPA Technology for Mold Identification and Enumeration. Available online: https://irp-cdn.multiscreensite.com/c4e267ab/files/uploaded/gCQnkBNWQuSD96fPIikY_EPA_TechnologyforMoldIdentificationandEnumeration.pdf (accessed on 21 February 2021).
- Edwards, R.D.; Yurkow, E.J.; Lioy, P.J. Seasonal deposition of housedusts onto household surfaces. Sci. Total Environ. 1998, 224, 69–80. [Google Scholar] [CrossRef]
- Shraim, A.M.; Alenazi, D.A.; Abdel-Salam, A.-S.G.; Kumar, P. Loading Rates of Dust and Metals in Residential Houses of Arid and Dry Climatic Regions. Aerosol Air Qual. Res. 2016, 16, 2462–2473. [Google Scholar] [CrossRef] [Green Version]
- Khoder, M.I.; Hassan, S.K.; El-Abssawy, A.A. An Evaluation of Loading Rate of Dust, Pb, Cd, and Ni and Metals Mass Concentration in the Settled Surface Dust in Domestic Houses and Factors Affecting Them. Indoor Built Environ. 2010, 19, 391–399. [Google Scholar] [CrossRef]
- Adhikari, A.; Kettleson, E.M.; Vesper, S.; Kumar, S.; Popham, D.L.; Schaffer, C.; Indugula, R.; Chatterjee, K.; Allam, K.K.; Grinshpun, S.A.; et al. Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Sci. Total Environ. 2014, 482–483, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Gunnarsen, L.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. 2012, 14, 3230. [Google Scholar] [CrossRef]
- Frankel, M.; Timm, M.; Hansen, E.W.; Madsen, A.M. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 2012, 22, 405–414. [Google Scholar] [CrossRef]
- Caetano, L.A.; Faria, T.; Springer, J.; Loeffler, J.; Viegas, C. Antifungal-resistant Mucorales in different indoor environments. Mycology 2019, 10, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, J.; Baranyi, N.; Chandrasekaran, M.; Vágvölgyi, C.; Kocsubé, S. Mycotoxin producers in the Aspergillus genus: An update. Acta Biol. Szeged. 2015, 59, 151–167. [Google Scholar]
- Houbraken, J.; Verweij, P.E.; Rijs, A.J.M.M.; Borman, A.M.; Samson, R.A. Identification of Paecilomyces variotii in Clinical Samples and Settings. J. Clin. Microbiol. 2010, 48, 2754–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, H.K.; Heinsohn, P.A.; Miller, J.D. Field Guide for the Determination of Biological Contaminants in Environmental Samples. Available online: https://online-ams.aiha.org/amsssa/ecssashop.show_product_detail?p_mode=detail&p_product_serno=859 (accessed on 12 March 2021).
- European Centre for Disease Prevention and Control (ECDC). Risk Assessment on the Impact of Environmental Usage of Triazoles on the Development and Spread of Resistance to Medical Triazoles in Aspergillus Species. Available online: https://www.ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/risk-assessment-impact-environmental-usage-of-triazoles-on-Aspergillus-spp-resistance-to-medical-triazoles.pdf (accessed on 21 February 2021).
- Sabino, R.; Carolino, E.; Veríssimo, C.; Martinez, M.; Clemons, K.V.; Stevens, D.A. Antifungal susceptibility of 175 Aspergillus isolates from various clinical and environmental sources. Med. Mycol. 2016, 54, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, D.; Sertić, M.; Kocsubé, S.; Kovačević, I.; Kifer, D.; Mornar, A.; Nigović, B.; Šegvić Klarić, M. Post-Flood Impacts on Occurrence and Distribution of Mycotoxin-Producing Aspergilli from the Sections Circumdati, Flavi, and Nigri in Indoor Environment. J. Fungi 2020, 6, 282. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Rothman, R.E. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004, 4, 337–348. [Google Scholar] [CrossRef]
- McDevitt, J.J.; Lees, P.S.J.; Merz, W.G.; Schwab, K.J. Inhibition of quantitative PCR analysis of fungal conidia associated with indoor air particulate matter. Aerobiologia 2007, 23, 35–45. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Bilodeau, G.J.; Duchaine, C. Fungal aerosols at dairy farms using molecular and culture techniques. Sci. Total Environ. 2019, 653, 253–263. [Google Scholar] [CrossRef]
- Madsen, A.M.; Frederiksen, M.W.; Jacobsen, M.H.; Tendal, K. Towards a risk evaluation of workers’ exposure to handborne and airborne microbial species as exemplified with waste collection workers. Environ. Res. 2020, 183, 109177. [Google Scholar] [CrossRef] [PubMed]
- Niculita-Hirzel, H.; Yang, S.; Hager Jörin, C.; Perret, V.; Licina, D.; Goyette Pernot, J. Fungal Contaminants in Energy Efficient Dwellings: Impact of Ventilation Type and Level of Urbanization. Int. J. Environ. Res. Public Health 2020, 17, 4936. [Google Scholar] [CrossRef]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. The Diversity and Distribution of Fungi on Residential Surfaces. PLoS ONE 2013, 8, e78866. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I. Assessment of Bacterial and Fungal Aerosol in Different Residential Settings. Water Air Soil Pollut. 2010, 211, 367–377. [Google Scholar] [CrossRef]
- Nastasi, N.; Haines, S.R.; Xu, L.; da Silva, H.; Divjan, A.; Barnes, M.A.; Rappleye, C.A.; Perzanowski, M.S.; Green, B.J.; Dannemiller, K.C. Morphology and quantification of fungal growth in residential dust and carpets. Build. Environ. 2020, 174, 106774. [Google Scholar] [CrossRef]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flannigan, B.; Samson, R.A.; Miller, J.D. Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Zock, J.-P.; Jarvis, D.; Luczynska, C.; Sunyer, J.; Burney, P. Housing characteristics, reported mold exposure, and asthma in the European Community Respiratory Health Survey. J. Allergy Clin. Immunol. 2002, 110, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, J.F.; Ren, P.; Belanger, K.; Triche, E.; Bracken, M.B.; Holford, T.R.; Leaderer, B.P. Levels of household mold associated with respiratory symptoms in the first year of life in a cohort at risk for asthma. Environ. Health Perspect. 2002, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, W.D. A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLoS ONE 2020, 15, e0238901. [Google Scholar] [CrossRef]
- Howden-Chapman, P.; Crane, J.; Matheson, A.; Viggers, H.; Cunningham, M.; Blakely, T.; O’Dea, D.; Cunningham, C.; Woodward, A.; Saville-Smith, K.; et al. Retrofitting houses with insulation to reduce health inequalities: Aims and methods of a clustered, randomised community-based trial. Soc. Sci. Med. 2005, 61, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.-S.; Yun, Y.-H.; Yoo, H.-D.; Kim, S.H. Molds Isolated from Pet Dogs. Mycobiology 2007, 35, 100. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Malta-Vacas, J.; Sabino, R.; Viegas, S.; Veríssimo, C. Accessing indoor fungal contamination using conventional and molecular methods in Portuguese poultries. Environ. Monit. Assess. 2014, 186, 1951–1959. [Google Scholar] [CrossRef]
- Pasanen, A.-L.; Kalliokoski, P.; Pasanen, P.; Jantunen, M.J.; Nevalainen, A. Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environ. Int. 1991, 17, 225–228. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Lai, A.C.K.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W.W. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef] [Green Version]
- An, K.-D.; Kiyuna, T.; Kigawa, R.; Sano, C.; Miura, S.; Sugiyama, J. The identity of Penicillium sp. 1, a major contaminant of the stone chambers in the Takamatsuzuka and Kitora Tumuli in Japan, is Penicillium paneum. Antonie Van Leeuwenhoek 2009, 96, 579–592. [Google Scholar] [CrossRef] [PubMed]
- la Rosa-Garcia, D.; del Carmen, S.; Ortega-Morales, O.; Gaylarde, C.C.; Beltrán-Garcia, M.; Quintana-Owen, P.; Reyes-Estebanez, M. Influence of fungi in the weathering of limestone of Mayan monuments. Rev. Mex. Micol. 2011, 33, 43–51. [Google Scholar]
- Franchitti, E.; Pascale, E.; Fea, E.; Anedda, E.; Traversi, D. Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere 2020, 11, 452. [Google Scholar] [CrossRef]
- Li, J.M.; Wan, M.P.; Schiavon, S.; Tham, K.W.; Zuraimi, S.; Xiong, J.; Fang, M.; Gall, E. Size-resolved dynamics of indoor and outdoor fluorescent biological aerosol particles in a bedroom: A one-month case study in Singapore. Indoor Air 2020, 30, 942–954. [Google Scholar] [CrossRef]
Genus/Species | MEA | DG18 | ||||
---|---|---|---|---|---|---|
N | CFU m−2 day−1 | % | N | CFU m−2 day−1 | % | |
Alternaria sp. | 17 | 4.84 ×101 | 11.3 | 2 | 4.02 × 100 | 0.777 |
Aspergillus sp. | 29 | 1.04 × 102 | 26.4 | 24 | 1.49 × 102 | 28.8 |
Aureobasidium sp. | 2 | 8.28 × 100 | 2.09 | 3 | 7.46 × 100 | 1.44 |
C. sitophila | 2 | 3.78 × 100 | 0.956 | 3 | 5.778 × 100 | 1.12 |
Chrysosporium sp. | 2 | 1.90 × 100 | 0.480 | 5 | 2.44 × 101 | 4.73 |
Cladosporium sp. | 19 | 7.57 × 101 | 19.1 | 30 | 2.02 × 102 | 39.2 |
F. oxysporum | 1 | 9.83 × 101 | 0.248 | 2 | 4.98 × 100 | 0.964 |
Mucor sp. | 5 | 7.48 × 100 | 1.89 | 0 | 9.48 × 100 | 1.83 |
Paecilomyces sp. | 1 | 9.07 × 101 | 0.229 | 0 | Not detected | - |
Penicillium sp. | 33 | 1.43 × 102 | 36.2 | 27 | 1.09 × 102 | 21.2 |
Trichothecium roseum | 1 | 9.83 × 101 | 0.248 | 0 | Not detected | - |
Ulocladium sp. | 2 | 2.98 × 100 | 0.753 | 2 | Not detected | - |
Genus/Species | SAB | ITR | VOR | POS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | CFU m−2 day−1 | % | N | CFU m−2 day−1 | % | N | CFU m−2 day−1 | % | N | CFU m−2 day−1 | % | |
Alternaria sp. | 5 | 4.74 | 2.35 | 3 | 2.95 | 27.6 | 2 | 3.91 | 8.68 | |||
Aspergillus sp. | 24 | 44.6 | 22.1 | 0 | 1 | 0.983 | 2.19 | 1 | 1.91 | 24.7 | ||
Aureobasidium sp. | 1 | 1.80 | 0.892 | 0 | 0 | |||||||
C. sitophila | 18 | 27.3 | 13.5 | 1 | 0 | 2 | 2.97 | 38.2 | ||||
Cladosporium sp. | 10 | 27.8 | 13.8 | 0 | 6 | 7.67 | 17.0 | |||||
Fusarium oxysporum | 0 | 1 | 0.931 | 8.72 | 1 | 0.983 | 2.19 | 1 | 1.90 | 24.4 | ||
Fusarium poae | 1 | 1.97 | 0.974 | 0 | 0 | |||||||
Mucor sp. | 3 | 5.70 | 2.82 | 0 | 1 | 1.78 | 3.97 | |||||
Penicillium sp. | 32 | 82.2 | 40.7 | 6 | 6.79 | 63.7 | 18 | 25.9 | 57.5 | 1 | 0.983 | 12.7 |
Rhizopus sp. | 3 | 4.76 | 2.36 | 0 | 1 | 1.82 | 4.03 | |||||
Ulocladium sp. | 1 | 0.983 | 0.487 | 0 | 0 |
Deposit Rate | Bacterial Counts (CFU m−2 day−1) | Fungal Counts (CFU m−2 day−1) | Azoles Screening (CFU m−2 day−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TSA | VRBA | MEA | DG18 | SAB | ITR | VOR | POS | |||
−0.133 | 0.115 | −0.044 | −0.043 | 0.179 | 0.181 | 0.299 | −0.310 | |||
Characteristics of dwellings | Household | 0.033 | −0.258 | −0.015 | −0.234 | −0.298 | −0.193 | −0.096 | −0.091 | −0.103 |
Housing age in 2019 | 0.230 | 0.056 | −0.188 | 0.265 | 0.192 | −0.006 | 0.052 | 0.096 | −0.134 | |
Number of floors | −0.051 | 0.284 | 0.205 | −0.152 | 0.049 | 0.368 * | 0.021 | 0.093 | 0.467 ** | |
Floor | −0.043 | 0.074 | 0.040 | 0.248 | 0.256 | −0.007 | 0.061 | 0.168 | −0.209 | |
Division area | 0.160 | −0.319 | −0.195 | −0.500 ** | −0.512 ** | −0.245 | 0.069 | 0.078 | −0.168 | |
Ceiling height | −0.080 | −0.099 | 0.010 | −0.464 ** | −0.301 | −0.048 | −0.196 | −0.179 | 0.152 | |
Window dimension | 0.008 | −0.123 | 0.362 | −0.351 | −0.165 | −0.145 | −0.235 | 0.167 | 0.112 | |
Bacterial counts (CFU m−2 day−1) | TSA | 0.440 * | 0.294 | 0.352 | 0.416 * | −0.103 | 0.063 | 0.291 | ||
VRBA | 0.206 | 0.339 | 0.121 | 0.116 | 0.065 | −0.065 | ||||
Fungal counts (CFU m−2 day−1) | MEA | 0.779 ** | 0.272 | 0.285 | 0.320 | 0.016 | ||||
DG18 | 0.199 | 0.184 | 0.233 | −0.031 | ||||||
Azoles screening (CFU m−2 day−1) | SAB | 0.277 | 0.350 | 0.220 | ||||||
ITR | 0.402 * | −0.243 | ||||||||
VOR | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, C.; Dias, M.; Almeida, B.; Vicente, E.; Candeias, C.; Aranha Caetano, L.; Carolino, E.; Alves, C. Loading Rates of Dust and Bioburden in Dwellings in an Inland City of Southern Europe. Atmosphere 2021, 12, 378. https://doi.org/10.3390/atmos12030378
Viegas C, Dias M, Almeida B, Vicente E, Candeias C, Aranha Caetano L, Carolino E, Alves C. Loading Rates of Dust and Bioburden in Dwellings in an Inland City of Southern Europe. Atmosphere. 2021; 12(3):378. https://doi.org/10.3390/atmos12030378
Chicago/Turabian StyleViegas, Carla, Marta Dias, Beatriz Almeida, Estela Vicente, Carla Candeias, Liliana Aranha Caetano, Elisabete Carolino, and Célia Alves. 2021. "Loading Rates of Dust and Bioburden in Dwellings in an Inland City of Southern Europe" Atmosphere 12, no. 3: 378. https://doi.org/10.3390/atmos12030378
APA StyleViegas, C., Dias, M., Almeida, B., Vicente, E., Candeias, C., Aranha Caetano, L., Carolino, E., & Alves, C. (2021). Loading Rates of Dust and Bioburden in Dwellings in an Inland City of Southern Europe. Atmosphere, 12(3), 378. https://doi.org/10.3390/atmos12030378