GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Experimental Set-Up
2.3. Spatial Analysis and Modelling in the Geographical Information Systems (GIS)
3. Results and Discussion
3.1. Summary of the Measured CO2 Concentrations
3.2. Geostatistical Analysis of Temporal and Spatial Variability of Atmospheric CO2 Concentrations
3.3. Sampling Strategies for Optimization of the Effect of Interpolation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brondizio, E.S.; Solecki, W.; Leemans, R. Climate Change: A Virtual Special Issue with Commentary for #COP21. By Eduardo S Brondizio, William Solecki and Rik Leemans. Available online: https://www.elsevier.com/connect/climate-change-a-virtual-special-issue-with-commentary-for-cop21 (accessed on 19 December 2019).
- Mbow, H.-O.P.; Reisinger, A.; Canadell, J.; O’Brien, P. Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Smith, P., Howden, M., Krug, T., Masson-Delmotte, V., Mbow, C., Pörtner, H., Reisinger, A., Canadell, J., O’Brien, P., Eds.; FAO-IPCC: Rome, Italy, 2017. [Google Scholar]
- Ritchie, H.; Roser, M. CO2 and other Greenhouse Gas Emissions. Published online at OurWorldInData.org. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 19 December 2018).
- Bezyk, Y.; Dorodnikov, M.; Grzelka, A.; Nych, A. Characteristics of temporal variability of urban ecosystem-atmosphere CO2, CH4, and N2O fluxes. E3S Web Conf. 2018, 44, 00013. [Google Scholar] [CrossRef] [Green Version]
- Jasek-Kamińska, A.; Zimnoch, M.; Wachniew, P.; Różański, K. Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland. Atmosphere 2020, 11, 629. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Wu, K. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, Z.; Zhang, Y.; Xu, W.; Lv, X.; Liu, Y.; Lyu, H.; Li, X.; Xiao, J.; Ma, F. Study on Land-use Changes and Their Impacts on Air Pollution in Chengdu. Atmosphere 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Górka, M.; Lewicka-Szczebak, D. One-year spatial and temporal monitoring of concentration and carbon isotopic composition of atmospheric CO2 in a Wrocław (SW Poland) city area. Appl. Geochem. 2013, 35, 7–13. [Google Scholar] [CrossRef]
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.; Philips, W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389. [Google Scholar] [CrossRef] [Green Version]
- EPA. U.S. Environmental Protection Agency. Developing Spatially Interpolated. Surfaces and Estimating Uncertainty. EPA-454/R-04-004. November 2004. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1002QG4.PDF?Dockey=P1002QG4.PDF (accessed on 1 March 2021).
- Mandelmilch, M.; Ferenz, M.; Mandelmilch, N.; Potchter, O. Urban Spatial Patterns and Heat Exposure in the Mediterranean City of Tel Aviv. Atmosphere 2020, 11, 963. [Google Scholar] [CrossRef]
- Matejicek, L. Assessment of Energy Sources Using GIS; Springer International Publishing: Berlin, Germany, 2017; pp. 195–220. ISBN 978-3-319-52694-2. [Google Scholar]
- Ristanović, B.; Cimbaljević, M.; Miljković, Đ.; Ostojić, M.; Fekete, R. GIS Application for Determining Geographical Factors on Intensity of Erosion in Serbian River Basins. Case Study: The River Basin of Likodra. Atmosphere 2019, 10, 526. [Google Scholar] [CrossRef] [Green Version]
- Vizcaino, P.; Pistocchi, A. Use of a Simple GIS-Based Model in Mapping the Atmospheric Concentration of γ-HCH in Europe. Atmosphere 2014, 5, 720–736. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Matejicek, L. Spatial modelling of air pollution in urban areas with GIS: A case study on integrated database development. Adv. Geosci. 2005, 4, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Stocks, C.E.; Wise, S. The Role of GIS in Environmental Modelling. Geogr. Environ. Model. 2010, 4, 219–235. [Google Scholar] [CrossRef]
- Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2008, 24, 189–212. [Google Scholar] [CrossRef]
- Deligiorgi, D.; Philippopoulos, K. Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece. In Advanced Air Pollution; Nejadkoorki, F., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application. Int. J. Environ. Res. Public Health 2016, 13, 749. [Google Scholar] [CrossRef] [Green Version]
- Dashtpagerdi, M.; Sadatinejad, S.J.; Zare Bidaki, R.; Khorsandi, E. Evaluation of Air Pollution Trend Using GIS and RS Applications in South West of Iran. J. Indian Soc. Remote Sens. 2014, 42, 179–186. [Google Scholar] [CrossRef]
- Kianisadr, M.; Ghaderpoori, M.; Jafari, A.; Kamarehie, B.; Karami, M. Zoning of air quality index (PM10 and PM2.5) by Arc-GIS for Khorramabad city, Iran. Data Brief 2018, 19, 1131–1141. [Google Scholar] [CrossRef]
- Nichol, J.E.; Wong, M.S.; Wang, J. A 3D aerosol and visibility information system for urban areas using remote sensing and GIS. Atmos. Environ. 2010, 44, 2501–2506. [Google Scholar] [CrossRef]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Smolenski, R.; Beaulieu, J.; Townsend-Small, A.; Nietch, C. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Song, S.J. A GIS Based Approach to Spatio-Temporal Analysis of Urban Air Quality in Chengdu Plain. Int. Achieves Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, B7. [Google Scholar]
- Zhao, Y.; Wu, B.F.; Zeng, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 2013, 10, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth Future 2014, 2, 2014EF000255. [Google Scholar] [CrossRef] [Green Version]
- Levin, K.; Cashore, B.; Bernstein, S.; Auld, G. Playing it forward: Path dependency, progressive incrementalism, and the “super wicked” problem of global climate change. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 502002. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; McPherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Glob. Chang. Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Fedra, K. Urban environmental management: Monitoring, GIS, and modelling. Comput. Environ. Urban Syst. 1999, 23, 443–457. [Google Scholar] [CrossRef]
- Luke, M.B.; Bräuer, I.; Gerdes, H.; Ghermandi, A.; Kuik, O.; Markandya, A.; Navrud, S.; Nunes, P.A.; Schaafsma, M.; Vos, H.; et al. Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands. Environ. Resour. Econ. 2012, 52, 395–413. [Google Scholar]
- Statistical Office in Wroclaw. Available online: https://wroclaw.stat.gov.pl/en/ (accessed on 17 December 2019).
- Kasprzak, M.; Traczyk, A. LiDAR and 2D Electrical Resistivity Tomography as a Supplement of Geomorphological Investigations in Urban Areas: A Case Study from the City of Wrocław (SW Poland). Pure Appl. Geophys. 2014, 171, 835–855. [Google Scholar] [CrossRef] [Green Version]
- Dąbek, P.B.; Jurasz, J. GIS estimated potential of rooftop PVs in urban areas—Case study Wrocław (Poland). E3S Web Conf. 2018, 45, 00014. [Google Scholar] [CrossRef] [Green Version]
- Sikora, S. Bioclimate of Wroclaw; Institute of Geography and Regional Development, University of Wroclaw: Wrocław, Poland, 2008; ISBN 978-83-9281193-2-5. [Google Scholar]
- Ogimet Weather Service. Available online: http://ogimet.com/cgi-bin/gsynres?ind=12424&lang=en&decoded=yes&ndays=2&ano=2018&mes=07&day=19&hora=12 (accessed on 17 December 2019).
- The Weather Online Ltd—Meteorological Services. Available online: https://www.weatheronline.co.uk/ (accessed on 30 November 2019).
- Górka, M.; Bartz, W.; Rybak, J. The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. J. Aerosol Sci. 2018, 123, 63–75. [Google Scholar] [CrossRef]
- Picarro G2201-i Analyzer User’s Guide Rev.; Picarro, Inc.: Sunnyvale, CA, USA, 2012; Available online: http://cires1.colorado.edu/jimenez-group/Manuals/PicarroG2401_Manual_rev_1_14_11.pdf (accessed on 9 March 2021).
- OpenStreetMap.org. Available online: https://github.com/openstreetmap/openstreetmapwebsite/tree/master/config/locales (accessed on 1 December 2019).
- Arseni, M.; Voiculescu, M.; Georgescu, L.P.; Iticescu, C.; Rosu, A. Testing Different Interpolation Methods Based on Single Beam Echosounder River Surveying. Case Study: Siret River. ISPRS Int. J. Geo-Inf. 2019, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Ikechukwu, M.; Ebinne, E.; Idorenyin, U.; Raphael, N. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. J. Geogr. Inf. Syst. 2017, 9, 354–371. [Google Scholar] [CrossRef] [Green Version]
- Childs, C. Interpolating Surfaces in ArcGIS Spatial Analyst. ESRI Education Services. 2004. Available online: https://www.esri.com/news/arcuser/0704/files/interpolating.pdf (accessed on 3 April 2019).
- Mitasova, H.; Mitas, L.; Harmon, R. Simultaneous Spline Approximation and Topographic Analysis for Lidar Elevation Data 6 in Open-Source GIS. IEEE Geosci. Remote Sens. Lett. 2005, 2, 375–379. [Google Scholar] [CrossRef] [Green Version]
- ArcGIS Pro. How Spline Works. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/how-spline-works.htm#:~:text=The%20Spline%20tool%20uses%20an,exactly%20through%20the%20input%20points (accessed on 21 January 2020).
- Grundas, S.; Stepniewski, A. (Eds.) Advances in Agrophysical Research; IntechOpen: London, UK, 2013; p. 408. ISBN 978-953-51-1184-9. [Google Scholar]
- Garnero, G.; Godone, D. Comparisons between different interpolation techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W3, 139–144. [Google Scholar] [CrossRef] [Green Version]
- ArcGIS Help. Available online: https://doc.arcgis.com/en/arcgis-online (accessed on 3 April 2019).
- Ledoux, H.; Gold, C. An Efficient Natural Neighbour Interpolation Algorithm for Geoscientific Modelling. In Developments in Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2005; pp. 97–108. [Google Scholar]
- Kiš, I.M. Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable, case study of the Šandrovac Field. Min. Geol. Pet. Eng. Bull. 2016, 31, 41–58. [Google Scholar]
- Kumar, A.; Gupta, I.; Brandt, J.; Kumar, R.; Dikshit, A.; Patil, R.S. Air quality mapping using GIS and economic evaluation of health impact for Mumbai city, India. J. Air Waste Manag. Assoc. 2016. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Singh, P. Applying kriging approach on pollution data using GIS software. Int. J. Electron. Electr. Eng. 2013, 4, 185–190. [Google Scholar]
- Wu, C.-Y.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River. Ann. GIS 2019, 25, 133–151. [Google Scholar] [CrossRef]
- GIS Resources. A Knowledge Archive. Available online: http://www.gisresources.com/choosing-the-right-interpolation-method_2/ (accessed on 11 September 2019).
- Anselin, L.; Le Gallo, J. Interpolation of Air Quality Measures in Hedonic House Price Models: Spatial Aspects. Spat. Econ. Anal. 2006, 1, 31–52. [Google Scholar] [CrossRef]
- Meng, Y.; Cave, M.; Zhang, C. Comparison of methods for addressing the point-to-area data transformation to make data suitable for environmental, health and socio-economic studies. Sci. Total Environ. 2019, 06, 452. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Pandey, P.C.; Petropoulos, G.P.; Kourgialas, N.N.; Pandey, V.; Singh, U. GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques. Resources 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R. Integration of Topographic and Bathymetric Digital Elevation Model using ArcGIS Interpolation Methods: A Case Study of the Klamath River Estuary. Ph.D. Thesis, Geographic Information Science and Technology, University of Southern California, Los Angeles, CA, USA, 2015. [Google Scholar]
- Peckham, R.J.; Gyozo, J. Digital Terrain Modelling: Development and Applications in a Policy Support Environment; Springer: Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
- Karl, J.W.; Maurer, B.A. Spatial dependency of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information. Ecol. Inform. 2010, 5, 194–202. [Google Scholar] [CrossRef]
- Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed wind speed and direction data from the United Kingdom. Int. J. Climatol. 2008, 28, 947–959. [Google Scholar] [CrossRef]
- Jeleń, D. Anthropogenic Carbon Dioxide in Krakow City. Ph.D. Thesis, University of Science and Technology, Krakow, Poland, 2012. [Google Scholar]
- Pérez, I.A.; Sánchez, M.L.; García, M.Á.; Pardo, N.; Fernández-Duque, B. Statistical Analysis of the CO2 and CH4 Annual Cycle on the Northern Plateau of the Iberian Peninsula. Atmosphere 2020, 11, 769. [Google Scholar] [CrossRef]
- Butler, M.P.; Lauvaux, T.; Feng, S.; Liu, J.; Bowman, K.W.; Davis, K.J. Atmospheric Simulations of Total Column CO2 Mole Fractions from Global to Mesoscale within the Carbon Monitoring System Flux Inversion Framework. Atmosphere 2020, 11, 787. [Google Scholar] [CrossRef]
- Vardag, S.N.; Gerbig, C.; Janssens-Maenhout, G.; Levin, I. Estimation of continuous anthropogenic CO2: Model-based evaluation of CO2, CO, d13C(CO2) and d14C(CO2) tracer methods. Atmos. Chem. Phys. 2015, 15, 12705–12729. [Google Scholar] [CrossRef] [Green Version]
- Helfter, C.; Tremper, A.H.; Halios, C.H.; Kotthaus, S.; Bjorkegren, A.; Grimmond, C.S.B.; Nemitz, E. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos. Chem. Phys. 2016, 16, 10543–10557. [Google Scholar] [CrossRef] [Green Version]
- Super, I.; Stijn, N.C.D.; Visschedijk, A.J.H.; Denier van der Gon, H.A.C. Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design. Atmos. Chem. Phys. Discuss. 2019, 20, 1795–1816. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, T.S.; Sander, B.O.; Butterbach-Bahl, K.; Rufino, M.C.; Hickman, J.; Stirling, C.; Richards, M.; Wollenberg, E. Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Introduction to the SAMPLES Approach; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2016; pp. 1–13. [Google Scholar]
Environmental Factors | Correlation Coefficients | Atmospheric CO2 Concentration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSP_1 | RSP_2 | RSP_3 | RSP_4 | RSP_5 | RSP_6 | CSt | FSP_1 | FSP_2 | FSP_3 | WIOS_1 | WIOS_2 | Average of Sites | ||
Vegetation season | ||||||||||||||
Air temperature (°C) | Pearson | −0.19 | −0.30 | −0.51 | −0.47 | −0.57 | −0.52 | −0.62 | −0.21 | −0.11 | −0.16 | −0.31 | −0.49 | −0.43 |
Spearman | −0.20 | −0.46 | −0.46 | −0.62 | −0.35 | −0.57 | −0.64 | −0.19 | −0.12 | −0.13 | −0.30 | −0.55 | −0.41 | |
Atmospheric humidity (%) | Pearson | −0.08 | −0.07 | 0.31 | 0.21 | 0.56 | 0.32 | 0.12 | 0.28 | −0.28 | −0.17 | 0.17 | 0.36 | 0.28 |
Spearman | −0.23 | −0.07 | 0.19 | 0.14 | 0.31 | 0.24 | 0.32 | 0.24 | −0.30 | −0.21 | 0.21 | 0.38 | 0.22 | |
Atmospheric pressure (hPa) | Pearson | 0.13 | 0.35 | 0.15 | 0.38 | 0.35 | 0.11 | −0.06 | −0.32 | 0.06 | 0.51 | 0.10 | 0.14 | 0.17 |
Spearman | 0.14 | 0.30 | 0.22 | 0.42 | 0.53 | 0.27 | −0.14 | −0.33 | 0.02 | 0.30 | 0.24 | 0.32 | 0.24 | |
Wind velocity (m·s−1) | Pearson | 0.11 | 0.23 | 0.11 | −0.22 | −0.48 | −0.16 | 0.51 | 0.27 | 0.32 | 0.24 | −0.21 | −0.23 | −0.22 |
Spearman | 0.12 | 0.21 | 0.09 | −0.15 | −0.37 | −0.11 | 0.33 | 0.21 | 0.39 | 0.11 | −0.18 | −0.18 | −0.19 | |
Wind direction (deg) | Pearson | −0.21 | −0.13 | −0.31 | −0.12 | −0.25 | −0.16 | 0.06 | 0.05 | −0.19 | −0.45 | −0.29 | −0.11 | −0.19 |
Spearman | −0.29 | −0.15 | −0.38 | −0.10 | −0.42 | −0.12 | 0.03 | 0.09 | −0.25 | −0.39 | −0.36 | −0.14 | −0.23 | |
Heating season | ||||||||||||||
Air temperature (°C) | Pearson | −0.13 | −0.16 | −0.31 | −0.19 | −0.18 | −0.41 | −0.21 | −0.31 | −0.36 | −0.19 | −0.26 | −0.35 | −0.37 |
Spearman | −0.15 | −0.12 | −0.32 | −0.32 | −0.19 | −0.40 | −0.17 | −0.50 | −0.34 | −0.24 | −0.35 | −0.32 | −0.39 | |
Atmospheric humidity (%) | Pearson | 0.19 | 0.19 | 0.30 | 0.51 | 0.39 | 0.29 | 0.13 | 0.11 | 0.09 | 0.09 | 0.13 | 0.39 | 0.29 |
Spearman | 0.36 | 0.17 | 0.31 | 0.41 | 0.43 | 0.32 | 0.14 | 0.12 | 0.16 | 0.11 | 0.19 | 0.41 | 0.31 | |
Atmospheric pressure (hPa) | Pearson | 0.14 | 0.19 | 0.11 | 0.39 | 0.26 | 0.19 | 0.09 | 0.09 | 0.26 | 0.08 | 0.15 | 0.34 | 0.19 |
Spearman | 0.27 | 0.15 | 0.12 | 0.29 | 0.13 | 0.18 | 0.10 | 0.11 | 0.26 | 0.16 | 0.18 | 0.33 | 0.17 | |
Wind velocity (m·s−1) | Pearson | −0.17 | −0.16 | −0.13 | −0.17 | −0.18 | −0.19 | −0.33 | −0.28 | −0.16 | −0.17 | −0.11 | −0.27 | −0.16 |
Spearman | −0.19 | −0.13 | −0.11 | −0.18 | −0.21 | −0.23 | −0.34 | −0.27 | −0.25 | −0.19 | −0.18 | −0.16 | −0.14 | |
Wind direction (deg) | Pearson | −0.15 | −0.11 | −0.18 | −0.14 | −0.17 | −0.26 | −0.35 | −0.48 | −0.39 | −0.15 | −0.26 | −0.17 | −0.17 |
Spearman | −0.17 | −0.14 | −0.14 | −0.15 | −0.16 | −0.28 | −0.36 | −0.44 | −0.29 | −0.17 | −0.29 | −0.20 | −0.18 |
CO2 Concentration (ppm), Vegetation Season | ||||||
Interpolation Methods | Min | Max | Mean | Std. dev. | ME | RMSE |
Observed Values | 384.31 | 430.62 | 407.41 | 8.35 | - | - |
IDW | 403.42 | 430.52 | 416.97 | 2.39 | −0.13 | 8.74 |
Spline | 392.61 | 438.94 | 415.77 | 1.66 | −0.41 | 8.27 |
Natural Neighbor | 403.51 | 420.51 | 412.01 | 7.44 | 0.13 | 4.22 |
Voronoi Polygons | 403.31 | 430.52 | 418.41 | 1.61 | −0.65 | 9.17 |
CO2 Concentration (ppm), Heating Season | ||||||
Interpolation Methods | Min | Max | Mean | Std. dev. | ME | RMSE |
Observed Values | 411.35 | 455.93 | 433.64 | 6.05 | - | - |
IDW | 426.57 | 436.39 | 431.48 | 1.68 | −1.74 | 7.05 |
Spline | 411.76 | 457.12 | 434.44 | 1.37 | −0.85 | 6.88 |
Natural Neighbor | 424.27 | 443.43 | 433.85 | 4.64 | 0.83 | 3.81 |
Voronoi Polygons | 426.36 | 436.39 | 431.37 | 2.53 | −1.61 | 7.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezyk, Y.; Sówka, I.; Górka, M.; Blachowski, J. GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset. Atmosphere 2021, 12, 384. https://doi.org/10.3390/atmos12030384
Bezyk Y, Sówka I, Górka M, Blachowski J. GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset. Atmosphere. 2021; 12(3):384. https://doi.org/10.3390/atmos12030384
Chicago/Turabian StyleBezyk, Yaroslav, Izabela Sówka, Maciej Górka, and Jan Blachowski. 2021. "GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset" Atmosphere 12, no. 3: 384. https://doi.org/10.3390/atmos12030384
APA StyleBezyk, Y., Sówka, I., Górka, M., & Blachowski, J. (2021). GIS-Based Approach to Spatio-Temporal Interpolation of Atmospheric CO2 Concentrations in Limited Monitoring Dataset. Atmosphere, 12(3), 384. https://doi.org/10.3390/atmos12030384