Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climatology of Double ITCZs
3.2. Impacts of the Three Extreme El Niños
3.2.1. Seasonal Evolution
3.2.2. Meridional Structure of SSTs and ITCZs in March–April
3.2.3. Spatial Distributions in March–April
3.3. Modulation of Meridional Delta SST on Double ITCZs
3.3.1. Relationship between SST and Double ITCZs in 1982/1983, 1997/1998, and 2015/2016 Events
3.3.2. Time Evolution of Delta SST over the Eastern Pacific Ocean
3.3.3. Possible Explanation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, H.L.; Wang, R.; Zhai, P.; Ding, Y.; Lu, B. Upper-ocean dynamical features and prediction of the super El Niño in 2015/16: A comparison with the cases in 1982/83 and 1997/98. J. Meteorol. Res. 2017, 31, 278–294. [Google Scholar] [CrossRef]
- Xue, Y.; Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. China Earth Sci. 2017, 60, 1572–1588. [Google Scholar] [CrossRef] [Green Version]
- Paek, H.; Yu, J.Y.; Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 2017, 44, 1848–1856. [Google Scholar] [CrossRef]
- Abellán, E.; McGregor, S.; England, M.H.; Santoso, A. Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño. Clim. Dyn. 2018, 51, 2191–2208. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim. Dyn. 2019, 52, 7339–7357. [Google Scholar] [CrossRef]
- Xie, R.; Fang, X. The unusual 2014–2016 El Niño events: Dynamics, prediction and enlightenments. Sci. China Earth Sci. 2020, 63, 626–633. [Google Scholar] [CrossRef]
- Lim, Y.K.; Kovach, R.M.; Pawson, S.; Vernieres, G. The 2015/16 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/83 and 1997/98. J. Clim. 2017, 30, 4819–4842. [Google Scholar] [CrossRef]
- Xie, R.; Yang, Y. Revisiting the latitude fluctuations of the eastern Pacific ITCZ during the central Pacific El Niño. Geophys. Res. Lett. 2014, 41, 7770–7776. [Google Scholar] [CrossRef]
- Philander, S.G.H.; Gu, D.; Lambert, G.; Li, T.; Halpern, D.; Lau, N.C.; Pacanowski, R.C. Why the ITCZ is mostly north of the equator. J. Clim. 1996, 9, 2958–2972. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Double ITCZs. J. Geophys. Res. Atmos. 2001, 106, 11785–11792. [Google Scholar] [CrossRef]
- Xie, S.P.; Philander, S.G.H. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 1994, 46, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Lietzke, C.E.; Deser, C.; Vonder Haar, T.H. Evolutionary Structure of the Eastern Pacific Double ITCZ Based on Satellite Moisture Profile Retrievals. J. Clim. 2001, 14, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Adler, R.F.; Sobel, A.H. The eastern Pacific ITCZ during the boreal spring. J. Atmos. Sci. 2005, 62, 1157–1174. [Google Scholar] [CrossRef]
- Xie, S.P.; Peng, Q.; Kamae, Y.; Zheng, X.T.; Tokinaga, H.; Wang, D. Eastern Pacific ITCZ dipole and ENSO diversity. J. Clim. 2018, 31, 4449–4462. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Xie, R.; Chang, H. A Comparative Analysis of the Impacts of Two Types of El Niño on the Central and Eastern Pacific ITCZ. Atmosphere 2018, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Li, G. Double intertropical convergence zones over the eastern Pacific Ocean: Contrasting impacts of the eastern Pacific-and central Pacific-type El Niños. Atmos. Sci. Lett. 2018, 19. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; An, S.I. Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Li, G.; Ren, B.; Yang, C.; Zheng, J. Indices of El Niño and El Niño Modoki: An improved El Niño Modoki index. Adv. Atmos. Sci. 2010, 27, 1210–1220. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zagar, N.; Skok, G.; Tribbia, J. Climatology of the ITCZ derived from ERA Interim reanalyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Adam, O.; Bischoff, T.; Schneider, T. Seasonal and Interannual Variations of the Energy Flux Equator and ITCZ. Part I: Zonally Averaged ITCZ Position. J. Clim. 2016, 29, 3219–3230. [Google Scholar] [CrossRef]
- Adam, O.; Bischoff, T.; Schneider, T. Seasonal and Interannual Variations of the Energy Flux Equator and ITCZ. Part II: Zonally Varying Shifts of the ITCZ. J. Clim. 2016, 29, 7281–7293. [Google Scholar] [CrossRef]
- Mitchell, T.P.; Wallace, J.M. The annual cycle in equatorial convection and sea-surface temperature. J. Clim. 1992, 5, 1140–1156. [Google Scholar] [CrossRef] [Green Version]
- Henke, D.; Smyth, P.; Haffke, C.; Magnusdottir, G. Automated analysis of the temporal behavior of the double Intertropical Convergence Zone over the east Pacific. Remote Sens. Environ. 2012, 123, 418–433. [Google Scholar] [CrossRef] [Green Version]
- Haffke, C.; Magnusdottir, G.; Henke, D.; Smyth, P.; Peings, Y. Daily states of the March–April east Pacific ITCZ in three decades of high-resolution satellite data. J. Clim. 2016, 29, 2981–2995. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef] [Green Version]
- Privé, N.C.; Plumb, R.A. Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci. 2007, 64, 1417–1430. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Gray, L.J.; Anstey, J.A.; Kawatani, Y.; Lu, H.; Osprey, S.; Schenzinger, V. Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys. 2018, 18, 8227–8247. [Google Scholar] [CrossRef] [Green Version]
- Collimore, C.C.; Martin, D.W.; Hitchman, M.H.; Huesmann, A.; Waliser, D.E. On the relationship between the QBO and tropical deep convection. J. Clim. 2003, 16, 2552–2568. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hartmann, D.L. The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci. 2011, 68, 2026–2041. [Google Scholar] [CrossRef]
- Osprey, S.M.; Butchart, N.; Knight, J.R.; Scaife, A.A.; Hamilton, K.; Anstey, J.A.; Schenzinger, V.; Zhang, C. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 2016, 353, 1424–1427. [Google Scholar] [CrossRef] [Green Version]
- Newman, P.A.; Coy, L.; Pawson, S.; Lait, L.R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 2016, 43, 8791–8797. [Google Scholar] [CrossRef]
- Dunkerton, T.J. The quasi-biennial oscillation of 2015–2016: Hiccup or death spiral? Geophys. Res. Lett. 2016, 43, 10–547. [Google Scholar] [CrossRef]
- Diallo, M.; Riese, M.; Birner, T.; Konopka, P.; Müller, R.; Hegglin, M.I.; Santee, M.L.; Baldwin, M.; Legras, B.; Ploeger, F. Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. 2018, 18, 13055–13073. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.R.; Liou, Y.A. Tropical tropopause layer evolution during 2015–16 El Niño event inferred from COSMIC RO measurements. J. Atmos. Sol. Terr. Phys. 2021, 212, 212. [Google Scholar] [CrossRef]
- Kawatani, Y.; Hamilton, K. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 2013, 497, 478–481. [Google Scholar] [CrossRef]
- Lyman, J.M.; Good, S.A.; Gouretski, V.V.; Ishii, M.; Johnson, G.C.; Palmer, M.D.; Smith, D.M.; Willis, J.K. Robust warming of the global upper ocean. Nature 2010, 465, 334–337. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Luo, F.; Huang, Z. The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 2019, 39, 4853–4868. [Google Scholar] [CrossRef]
- Allan, R.J.; Gergis, J.; D’Arrigo, R.D. Placing the AD 2014–2016 ‘protracted’El Niño episode into a long-term context. Holocene 2020, 30, 90–105. [Google Scholar] [CrossRef]
- Cha, S.C.; Moon, J.H.; Song, Y.T. A Recent Shift Toward an El Niño-Like Ocean State in the Tropical Pacific and the Resumption of Ocean Warming. Geophys. Res. Lett. 2018, 45, 11–885. [Google Scholar] [CrossRef]
- Shi, J.; Fedorov, A.V.; Hu, S. North Pacific temperature and precipitation response to El Niño-like equatorial heating: Sensitivity to forcing location. Clim. Dyn. 2019, 53, 2731–2741. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.Y.; Braconnot, P.; Cole, J.; Dweitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yan, L.; Li, G.; Xu, J.; Long, J.; Zheng, S. Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean. Atmosphere 2021, 12, 424. https://doi.org/10.3390/atmos12040424
Chen Y, Yan L, Li G, Xu J, Long J, Zheng S. Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean. Atmosphere. 2021; 12(4):424. https://doi.org/10.3390/atmos12040424
Chicago/Turabian StyleChen, Yinlan, Li Yan, Gen Li, Jianjun Xu, Jingchao Long, and Shaojun Zheng. 2021. "Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean" Atmosphere 12, no. 4: 424. https://doi.org/10.3390/atmos12040424
APA StyleChen, Y., Yan, L., Li, G., Xu, J., Long, J., & Zheng, S. (2021). Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean. Atmosphere, 12(4), 424. https://doi.org/10.3390/atmos12040424