Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health
Abstract
:1. Introduction
1.1. PM Distribution to the Brain
1.2. PM Constituents
1.3. PM Sources
1.4. Air Pollution and Mental Health
2. Methods
3. PM and Mental Health: Epidemiological Studies
4. PM and Mental Health: Toxicology Studies
5. Conclusions
6. Gaps in Literature and Future Directions
Funding
Conflicts of Interest
References
- Attademo, L.; Bernardini, F.; Garinella, R.; Compton, M.T. Environmental pollution and risk of psychotic disorders: A review of the science to date. Schizophr. Res. 2017, 181, 55–59. [Google Scholar] [CrossRef]
- Fan, S.J.; Heinrich, J.; Bloom, M.S.; Zhao, T.Y.; Shi, T.X.; Feng, W.R.; Sun, Y.; Shen, J.C.; Yang, Z.C.; Yang, B.Y.; et al. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. Sci. Total Environ. 2020, 701, 134721. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Church, J.S.; Tijerina, P.B.; Emerson, F.J.; Coburn, M.A.; Blum, J.L.; Zelikoff, J.T.; Schwartzer, J.J. Perinatal exposure to concentrated ambient particulates results in autism-like behavioral deficits in adult mice. Neurotoxicology 2018, 65, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ruan, Z.; Wang, X.; Yang, Y.; Mason, T.G.; Lin, H.; Tian, L. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ. Pollut. 2019, 247, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Klocke, C.; Sherina, V.; Graham, U.M.; Gunderson, J.; Allen, J.L.; Sobolewski, M.; Blum, J.L.; Zelikoff, J.T.; Cory-Slechta, D.A. Enhanced cerebellar myelination with concomitant iron elevation and ultrastructural irregularities following prenatal exposure to ambient particulate matter in the mouse. Inhal. Toxicol. 2018, 30, 381–396. [Google Scholar] [CrossRef]
- Allen, J.L.; Klocke, C.; Morris-Schaffer, K.; Conrad, K.; Sobolewski, M.; Cory-Slechta, D.A. Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr. Environ. Health Rep. 2017, 4, 180–191. [Google Scholar] [CrossRef]
- Jew, K.; Herr, D.; Wong, C.; Kennell, A.; Morris-Schaffer, K.; Oberdorster, G.; O’Banion, M.K.; Cory-Slechta, D.A.; Elder, A. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer’s disease mice. Part. Fibre Toxicol. 2019, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Morris-Schaffer, K.; Merrill, A.; Jew, K.; Wong, C.; Conrad, K.; Harvey, K.; Marvin, E.; Sobolewski, M.; Oberdorster, G.; Elder, A.; et al. Effects of neonatal inhalation exposure to ultrafine carbon particles on pathology and behavioral outcomes in C57BL/6J mice. Part. Fibre Toxicol. 2019, 16, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, S.; Sun, C.; Qi, M.; Yu, X.; Zhao, W.; Li, X. Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. Int. J. Environ. Res. Public Health 2018, 15, 2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.A. Particulate Matter (Fine Particle) and Urologic Diseases. Int. Neurourol. J. 2017, 21, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladka, A.; Rymaszewska, J.; Zatonski, T. Impact of air pollution on depression and suicide. Int. J. Occup. Med. Environ. Health 2018, 31, 711–721. [Google Scholar] [CrossRef]
- Klocke, C.; Allen, J.L.; Sobolewski, M.; Mayer-Proschel, M.; Blum, J.L.; Lauterstein, D.; Zelikoff, J.T.; Cory-Slechta, D.A. Neuropathological Consequences of Gestational Exposure to Concentrated Ambient Fine and Ultrafine Particles in the Mouse. Toxicol. Sci. 2017, 156, 492–508. [Google Scholar] [CrossRef]
- Grande, G.; Ljungman, P.L.S.; Eneroth, K.; Bellander, T.; Rizzuto, D. Association Between Cardiovascular Disease and Long-term Exposure to Air Pollution With the Risk of Dementia. JAMA Neurol. 2020, 77, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klocke, C.; Allen, J.L.; Sobolewski, M.; Blum, J.L.; Zelikoff, J.T.; Cory-Slechta, D.A. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology 2018, 65, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Sobolewski, M.; Marvin, E.; Conrad, K.; Merrill, A.; Anderson, T.; Jackson, B.P.; Oberdorster, G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol. Pathol. 2019, 47, 976–992. [Google Scholar] [CrossRef]
- Popoola, L.T.; Adebanjo, S.A.; Adeoye, B.K. Assessment of atmospheric particulate matter and heavy metals: A critical review. Int. J. Environ. Sci. Technol. 2017, 15, 935–948. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Evans, G.; Speck, M.; Van Huang, A.; Leingartner, K.; Shutt, R.H.; Pelletier, G.; Gold, D.R.; et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ. Int. 2018, 121, 1331–1340. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Cory-Slechta, D.A.; Allen, J.L.; Conrad, K.; Marvin, E.; Sobolewski, M. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology 2018, 69, 217–231. [Google Scholar] [CrossRef]
- Li, N.; Han, W.; Tang, J.; Bian, J.; Sun, S.; Song, T. Pollution Characteristics and Human Health Risks of Elements in Road Dust in Changchun, China. Int. J. Environ. Res. Public Health 2018, 15, 1843. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Speck, M.; Leingartner, K.; Shutt, R.; Pelletier, G.; Gold, D.R.; Scott, J.A.; Brook, J.R.; et al. Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ. Int. 2017, 101, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Lubczyńska, M.J.; Muetzel, R.L.; El Marroun, H.; Basagana, X.; Strak, M.; Denault, W.; Jaddoe, V.W.V.; Hillegers, M.; Vernooij, M.W.; Hoek, G.; et al. Exposure to Air Pollution during Pregnancy and Childhood, and White Matter Microstructure in Preadolescents. Environ. Health Perspect. 2020, 128, 27005. [Google Scholar] [CrossRef]
- Mortamais, M.; Pujol, J.; Martinez-Vilavella, G.; Fenoll, R.; Reynes, C.; Sabatier, R.; Rivas, I.; Forns, J.; Vilor-Tejedor, N.; Alemany, S.; et al. Effects of prenatal exposure to particulate matter air pollution on corpus callosum and behavioral problems in children. Environ. Res. 2019, 178, 108734. [Google Scholar] [CrossRef] [PubMed]
- Rivas, I.; Basagana, X.; Cirach, M.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Garcia-Esteban, R.; Alvarez-Pedrerol, M.; Dadvand, P.; Sunyer, J. Association between Early Life Exposure to Air Pollution and Working Memory and Attention. Environ. Health Perspect. 2019, 127, 57002. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.R.; Noonan, C.; Garroutte, E.M.; Navas-Acien, A.; Verney, S.P.; Buchwald, D. Low-level inorganic arsenic exposure and neuropsychological functioning in American Indian elders. Environ. Res. 2017, 156, 74–79. [Google Scholar] [CrossRef]
- Dickerson, A.S.; Rotem, R.S.; Christian, M.A.; Nguyen, V.T.; Specht, A.J. Potential Sex Differences Relative to Autism Spectrum Disorder and Metals. Curr. Environ. Health Rep. 2017, 4, 405–414. [Google Scholar] [CrossRef]
- Guo, J.; Wu, C.; Zhang, J.; Qi, X.; Lv, S.; Jiang, S.; Zhou, T.; Lu, D.; Feng, C.; Chang, X.; et al. Prenatal exposure to mixture of heavy metals, pesticides and phenols and IQ in children at 7 years of age: The SMBCS study. Environ. Int. 2020, 139, 105692. [Google Scholar] [CrossRef] [PubMed]
- Leonhard, M.J.; Chang, E.T.; Loccisano, A.E.; Garry, M.R. A systematic literature review of epidemiologic studies of developmental manganese exposure and neurodevelopmental outcomes. Toxicology 2019, 420, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Seo, J.H.; Hong, Y.S.; Kim, Y.M.; Kang, J.W.; Yoo, J.H.; Chueh, H.W.; Lee, J.H.; Kwak, M.J.; Kim, J.; et al. Blood lead concentrations and attention deficit hyperactivity disorder in Korean children: A hospital-based case control study. BMC Pediatr. 2016, 16, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, J.Y.; Min, K.B. Blood cadmium levels and Alzheimer’s disease mortality risk in older US adults. Environ. Health 2016, 15, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Xin, Y.; Li, Q.; Shang, Y.; Ping, Z.; Min, J.; Cahill, C.M.; Rogers, J.T.; Wang, F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: A systematic review and meta-analysis. Environ. Health 2020, 19, 104. [Google Scholar] [CrossRef]
- Haynes, E.N.; Sucharew, H.; Hilbert, T.J.; Kuhnell, P.; Spencer, A.; Newman, N.C.; Burns, R.; Wright, R.; Parsons, P.J.; Dietrich, K.N. Impact of air manganese on child neurodevelopment in East Liverpool, Ohio. Neurotoxicology 2018, 64, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Haynes, E.N.; Sucharew, H.; Kuhnell, P.; Alden, J.; Barnas, M.; Wright, R.O.; Parsons, P.J.; Aldous, K.M.; Praamsma, M.L.; Beidler, C.; et al. Manganese Exposure and Neurocognitive Outcomes in Rural School-Age Children: The Communities Actively Researching Exposure Study (Ohio, USA). Environ. Health Perspect. 2015, 123, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Filho, J.A.; Carvalho, C.F.; Rodrigues, J.L.G.; Araujo, C.F.S.; Dos Santos, N.R.; Lima, C.S.; Bandeira, M.J.; Marques, B.L.S.; Anjos, A.L.S.; Bah, H.A.F.; et al. Environmental Co-Exposure to Lead and Manganese and Intellectual Deficit in School-Aged Children. Int. J. Environ. Res. Public Health 2018, 15, 2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesch, B.; Casjens, S.; Weiss, T.; Kendzia, B.; Arendt, M.; Eisele, L.; Behrens, T.; Ulrich, N.; Pundt, N.; Marr, A.; et al. Occupational Exposure to Manganese and Fine Motor Skills in Elderly Men: Results from the Heinz Nixdorf Recall Study. Ann. Work Expo. Health 2017, 61, 1118–1131. [Google Scholar] [CrossRef]
- Palzes, V.A.; Sagiv, S.K.; Baker, J.M.; Rojas-Valverde, D.; Gutierrez-Vargas, R.; Winkler, M.S.; Fuhrimann, S.; Staudacher, P.; Menezes-Filho, J.A.; Reiss, A.L.; et al. Manganese exposure and working memory-related brain activity in smallholder farmworkers in Costa Rica: Results from a pilot study. Environ. Res. 2019, 173, 539–548. [Google Scholar] [CrossRef]
- Pujol, J.; Fenoll, R.; Macia, D.; Martinez-Vilavella, G.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Deus, J.; Blanco-Hinojo, L.; Querol, X.; et al. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav. 2016, 6, e00467. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Li, B.; Ku, T.; Guo, L.; Li, G.; Sang, N. Comprehensive hippocampal metabolite responses to PM2.5 in young mice. Ecotoxicol. Environ. Saf. 2018, 165, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Bai, L.; Cai, Z.; Li, R.; Yung, K.K.L. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer’s disease transgenic mice. Ecotoxicol. Environ. Saf. 2020, 192, 110325. [Google Scholar] [CrossRef]
- Zhang, H.; Haghani, A.; Mousavi, A.H.; Cacciottolo, M.; D’Agostino, C.; Safi, N.; Sowlat, M.H.; Sioutas, C.; Morgan, T.E.; Finch, C.E.; et al. Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radic. Biol. Med. 2019, 145, 33–41. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yang, X. PM2.5 induced neurodegenerative-like changes in mice and the antagonistic effects of vitamin E. Toxicol. Res. 2019, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Ku, T.; Li, B.; Gao, R.; Zhang, Y.; Yan, W.; Ji, X.; Li, G.; Sang, N. NF-kappaB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Part. Fibre Toxicol. 2017, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zheng, J.; Xu, S.; Zhang, J.; Cao, Y.; Qin, Z.; Liu, X.; Jiang, C. The neurotoxicity induced by PM2.5 might be strongly related to changes of the hippocampal tissue structure and neurotransmitter levels. Toxicol. Res. 2018, 7, 1144–1152. [Google Scholar] [CrossRef] [Green Version]
- Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 8 February 2021).
- Anastopoulos, I.; Hosseini-Bandegharaei, A.; Fu, J.; Mitropoulos, A.C.; Kyzas, G.Z. Use of nanoparticles for dye adsorption: Review. J. Dispers. Sci. Technol. 2017, 39, 836–847. [Google Scholar] [CrossRef]
- Ko, S.; Huh, C. Use of nanoparticles for oil production applications. J. Petrol. Sci. Eng. 2019, 172, 97–114. [Google Scholar] [CrossRef]
- Blum, J.L.; Xiong, J.Q.; Hoffman, C.; Zelikoff, J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012, 126, 478–486. [Google Scholar] [CrossRef]
Study | Study Design | Inhalation Exposure | Results |
---|---|---|---|
Haynes et al., 2018 | Expansion of Communities Actively Researching Exposure (CARES) cohort (n = 106; East Liverpool Ohio, US) | Mn | Exposure negatively associated with Full Scale IQ measurements among children |
Haynes et al., 2015 | Expansion of CARES cohort (n = 404; East Liverpool Ohio, US) | Mn | Exposure negatively associated with Full Scale IQ measurements among children |
Menezes-Filho et al., 2018 | Cross-sectional study (n = 225; Simões Filho, Bahia, Brazil) | Mn and Pb | Exposure associated with intellectual deficiencies (IQ) |
Pesch et al., 2017 | Second follow up survey of Heinz Nixdorf Recall Study (HNRS) cohort (n = 1232; Germany) | Mn | Exposure associated with impaired dexterity |
Palzes et al., 2019 | Cross-sectional (n = 48; Zarcero County, Costa Rica) | Mn-associated fungicide | Exposure not associated with changes in working memory |
Pujol et al., 2016 | BREATHE Project cohort (n = 2836; Barcelona, Spain) | Cu | Exposure associated with impaired motor performance and altered basal ganglia in children |
Lubczyńska et al., 2020 | Generation R cohort (n = 2954; Rotterdam, Netherlands) | Various sizes of PM (including PM2.5) and metal constituents (including Si and Zn) | PM2.5 exposure associated with decrease in children’s fractional anisotropy Si exposure associated with increase in mean diffusivity Zn exposure associated with increase in mean diffusivity |
Liu et al., 2018 | Single-blind randomized cross-over trial (n = 53; Toronto, Canada) | Urban coarse ambient PM (>PM10); Concentrated ambient PM (PM0.1); Related metals (Al, Ba) | Ba exposure associated with increase in ubiquitin C-terminal hydrolase L1 Al exposure associated with increased urinary neural marker vanillylmandelic acid |
Study | Research Model | Route of Exposure | PM2.5 Treatments | Results |
---|---|---|---|---|
Ning et al., 2018 | C57BL/6 mice at 4 wk, 4 mo, 10 mo (n = 8–10 mice/group) | Oropharyngeal aspiration | 3 mg/kg every other day for 4 wk; saline (control) | Exposed mice showed deterioration of spatial learning and memory |
Fu et al., 2020 | APP/PS1 double transgenic AD-mice; littermate B6 mice (n = 5 mice/group) | Inhalation via exposure chambers | 61 µg/kg for 8 wk; filtered air (control) | Exposed mice with AD showed increase in inflammation in brain and intestines |
Zhang et al., 2019 | in vitro: THP1- Blue NF-κB human monocytes; BV-2 cell lines (n = 4) in vivo: C57BL/6NJ male mice (n = 10 mice/group) | in vitro: PM treatment in vivo: inhalation nebulizers | in vivo: re-aerosolized exposure for 3- or 8-wks; filtered air (control) | Exposure produced alterations in NF-κB |
Liu et al., 2019 | C57BL/6J male mice (n = 10 mice/group) | Intranasal instillation | Two rounds of exposure to various concentrations daily for 7 days (vitamin E added to second round); filtered air (control) | Exposed mice experienced reduction in escape latency; presence of protein aggregates in cerebral cortex; neuronal accumulation of amyloid beta1–42; increase in reactive oxygen species (ROS); increase in brain levels of malondialdehyde; decrease in brain-associated glutathione content and superoxide dismutase; increase in NF-κB, IL-1β and TNF-α |
Ku et al., 2017 | C57BL/6 male mice (n = 13–14 mice/group) | Oropharyngeal aspiration | 1 and 5 mg/kg every other day for 4-wks; saline (control) | Exposed mice experienced induced expression of amyloid precursor protein and β-secretase 1 |
Li et al., 2018 | Sprague-Dawley male rats (n = 8 rats/group) | Tracheal perfusion of solutions | 5, 10, 20 mL/kg solution once a week for up to 12- wks; saline (control) | Exposed mice experienced elevated levels of manganese in hippocampal tissue compared to control; decrease in spatial cognition and exploratory behaviors |
Church et al., 2018 | B6C3F1 pregnant female mice and offspring (n = 26 control mice; n = 31 exposure mice) | Inhalation via exposure chamber | Peri-natal (135.8 μg/m3; 6 hr/d 7 d/wk) post-natal (135.8 μg/m3; 2 hr/d 7 d/wk); filtered air (control) | Exposed mice exhibited an autism spectrum-like phenotype in a sex-dependent manner |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potter, N.A.; Meltzer, G.Y.; Avenbuan, O.N.; Raja, A.; Zelikoff, J.T. Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health. Atmosphere 2021, 12, 425. https://doi.org/10.3390/atmos12040425
Potter NA, Meltzer GY, Avenbuan ON, Raja A, Zelikoff JT. Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health. Atmosphere. 2021; 12(4):425. https://doi.org/10.3390/atmos12040425
Chicago/Turabian StylePotter, Nicole A., Gabriella Y. Meltzer, Oyemwenosa N. Avenbuan, Amna Raja, and Judith T. Zelikoff. 2021. "Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health" Atmosphere 12, no. 4: 425. https://doi.org/10.3390/atmos12040425
APA StylePotter, N. A., Meltzer, G. Y., Avenbuan, O. N., Raja, A., & Zelikoff, J. T. (2021). Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health. Atmosphere, 12(4), 425. https://doi.org/10.3390/atmos12040425