A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment
Abstract
:1. Introduction
2. Sampling Methods for Urban Dust
3. Determination Methods for Heavy Metals in Urban Dust
4. Source Apportionment of Heavy Metals in Urban Dust
5. Levels of Heavy Metals in Urban Dust
6. Risk Assessment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nakajima, F.; Aryal, R. Heavy metals in urban dust. In Heavy Metals; Saleh, H.E.M., Aglan, R.F., Eds.; IntechOpen Limited: London, UK, 2018; pp. 303–318. [Google Scholar]
- Mitsakou, C.; Kallos, G.; Papantoniou, N.; Spyrou, C.; Solomos, S.; Astitha, M.; Housiadas, C. Saharan dust levels in Greece and received inhalation doses. Atmos. Chem. Phys. 2008, 8, 7181–7192. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Hazard Prevention and Control in the Work Environment: Airborne Dust. 1999. Available online: https://www.who.int/occupational_health/publications/en/oehairbornedust3.pdf (accessed on 1 July 2021).
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Sci. Total Environ. 2019, 652, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Urban soils and road dust—Civilization effects and metal pollution—A review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Li, X. Levels and spatial distribution of heavy metals in urban dust in China. Chin. J. Geochem. 2015, 34, 498–506. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, J.; Song, N.; Wang, X.; Wei, T.; Yang, Z.; Li, Y. Comparison of metal pollution and health risks of urban dust in Beijing in 2007 and 2012. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Hieu, N.T. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual. Res. 2011, 11, 679–688. [Google Scholar] [CrossRef]
- Tang, Y.; Han, G. Seasonal variation and quality assessment of the major and trace elements of atmospheric dust in a typical karst city, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 325. [Google Scholar] [CrossRef] [Green Version]
- Quass, U.; John, A.C.; Kuhlbusch, T.A.J. Source apportionment of airborne dust in Germany: Methods and results. In Urban Air Quality in Europe; Springer: Berlin/Heidelberg, Germany, 2012; pp. 195–218. [Google Scholar]
- Jahandari, A. Pollution status and human health risk assessments of selected heavy metals in urban dust of 16 cities in Iran. Environ. Sci. Pollut. Res. 2020, 27, 23094–23107. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.-J.; Li, H.-H.; Lin, J.-Q.; Yang, Z.-B.; Yang, Y.-X.; Xu, X.-X.; Xian, J.-R.; Shao, J.-R.; Zhu, X.-M. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci. Total Environ. 2018, 619, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Liu, B.; Zhou, J.; Guo, J.; Sun, Z.; Meng, W.; Guo, X.; Duan, J. Health risk assessment on heavy metals in urban street dust of Tianjin based on trapezoidal fuzzy numbers. Hum. Ecol. Risk Assess. 2016, 22, 678–692. [Google Scholar] [CrossRef]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Sahakyan, L.; Maghakyan, N.; Belyaeva, O.; Tepanosyan, G.; Kafyan, M.; Saghatelyan, A. Heavy metals in urban dust: Contamination and health risk assessment: A case study from Gyumri, Armenia. Arab. J. Geosci. 2016, 9, 142. [Google Scholar] [CrossRef]
- Shabanda, I.S.; Koki, I.B.; Low, K.H.; Zain, S.M.; Khor, S.M.; Bakar, N.K.A. Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: A health risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 37193–37211. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A. Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Hum. Ecol. Risk Assess. 2014, 20, 658–667. [Google Scholar] [CrossRef]
- Wei, B.; Jiang, F.; Li, X.; Mu, S. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchem. J. 2009, 93, 147–152. [Google Scholar] [CrossRef]
- Aguilera, A.; Armendariz, C.; Quintana, P.; Garcia-Oliva, F.; Bautista, F. Influence of land use and road type on the elemental composition of urban dust in a Mexican metropolitan area. Pol. J. Environ. Stud. 2019, 28, 1535–1547. [Google Scholar] [CrossRef]
- Praveena, S.M. Characterization and risk analysis of metals associated with urban dust in Rawang (Malaysia). Arch. Environ. Contam. Toxicol. 2019, 75, 415–423. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, Q.; Appel, E.; Huang, B. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor. 2012, 119–120, 60–75. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef]
- Reyes, B.A.; Bautista, F.; Goguitchaichvili, A.; Contreras, J.J.M.; Owen, P.Q.; Carvallo, C.; Battu, J. Rock-magnetic properties of topsoils and urban dust from Morelia (>800,000 inhabitants), Mexico: Implications for anthropogenic pollution monitoring in Mexico’s medium size cities. Geofis. Int. 2013, 52, 121–133. [Google Scholar]
- Saghatelyan, A.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N. Studying atmospheric dust and heavy metals on urban sites through synchronous use of different methods. J. Atmos. Pollut. 2014, 2, 12–16. [Google Scholar]
- Trujilo-Gonzalez, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jimenez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Tanner, P.; Lingma, H.; Yu, P.K.N. Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef] [PubMed]
- Budai, P.; Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. D Transp. Environ. 2018, 62, 179–185. [Google Scholar] [CrossRef]
- Lundberg, J.; Blomqvist, G.; Gustafsson, M.; Janhäll, S.; Järlskog, I. Wet dust sampler—A sampling method for road dust quantification and analyses. Water Air Soil Pollut. 2019, 230, 180. [Google Scholar] [CrossRef] [Green Version]
- Colinet, J. Dust Sampling Instrumentation and Methods. 2010. Available online: https://www.cdc.gov/niosh/mining/userfiles/workshops/silicamnm2010/3-colinet-dustsampling.pdf (accessed on 3 June 2021).
- Sharma, B.; Tyagi, S. Simplification of metal ion analysis in fresh water samples by atomic absorption spectroscopy for laboratory students. J. Lab. Chem. Edu. 2013, 1, 54–58. [Google Scholar]
- Shi, G.; Chen, Z.; Bi, C.; Wang, L.; Teng, J.; Li, Y.; Xu, S. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Cao, S.; Chen, X.; Zhang, L.; Xing, X.; Wen, D.; Wang, B.; Qin, N.; Wei, F.; Duan, X. Quantificational exposure, sources, and health risks posed by heavy metals in indoor and outdoor household dust in a typical smelting area in China. Indoor Air 2020, 30, 872–884. [Google Scholar] [CrossRef]
- Benhaddya, M.L.; Boukhelkhal, A.; Halis, Y.; Hadjel, M. Human health risks associated with metals from urban soil and road dust in an oilfield area of South eastern Algeria. Arch. Environ. Contam. Toxicol. 2016, 70, 556–571. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzeminska, E.; Wieszala, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.; Bautista, F.; Delgado, C.; Quintana, P.; Aguilar, D.; Garcia, L.; Figueroa, C.; Gogichaishvili, A. Spatial distribution of heavy metals in urban dust from Ensenada, Baja California, Mexico. Rev. Chapingo Ser. Cienc. For. Ambiente 2017, 23, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Davila, A.F.; Rey, D.; Mohamed, K.; Rubio, B.; Guerra, A.P. Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ. Sci. Technol. 2006, 40, 3922–3928. [Google Scholar] [CrossRef] [PubMed]
- Bioline Global Private Limited. 5 Key Points to Consider when Purchasing Lab. Equipment. 2021. Available online: https://www.biolineglobal.com.au/5-key-points-to-consider-when-purchasing-lab-equipment/ (accessed on 1 July 2021).
- Brooks Applied Labs. Interference Removal by ICP-DRC-MS. 2021. Available online: https://brooksapplied.com/services/interference-reduction-technology/spectral-interference-removal-icp-drc-ms/ (accessed on 2 June 2021).
- Kawabata, K.; Kishi, Y.; Thomas, R. The benefits of dynamic reaction cell ICP-MS technology to determine ultratrace metal contamination levels in high-purity phosphoric and sulfuric acid. Spectroscopy 2003, 18, 16–31. [Google Scholar]
- Wilschefski, S.C.; Baxter, M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Mathias, J. The Advantages and Disadvantages of X-ray Photoelectron Spectroscopy (XPS/ESCA). 2019. Available online: https://www.innovatechlabs.com/newsroom/2012/advantages-disadvantages-xps-testing-analysis/ (accessed on 7 June 2021).
- Liu, J.; Liu, Y.J.; Liu, Y.; Liu, Z.; Zhang, A.N. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicol. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, D. Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China. Environ. Sci. Pollut. Res. 2021, 28, 9313–9326. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Marmur, A.; Klein, M.; Kim, E.; Russell, A.G.; Sarnat, S.E.; Mulholland, J.A.; Hopke, P.K.; Tolbert, P.E. Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environ. Health Perspect. 2008, 116, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Brines, M.; Dall’Osto, M.; Amato, F.; Minguillón, M.C.; Karanasiou, A.; Grimalt, J.O.; Alastuey, A.; Querol, X.; van Drooge, B.L. Source apportionment of urban PM 1 in Barcelona during SAPUSS using organic and inorganic components. Environ. Sci. Pollut. Res. 2019, 26, 32114–32127. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A. Enhancing source apportionment with receptor models to foster the air quality directive implementation. Int. J. Environ. Pollut. 2012, 50, 190–199. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, T.; Hu, X.; Xie, M. Chemical mass balance source apportionment of size-fractionated particulate matter in Nanjing, China. Aerosol Air Qual. Res. 2015, 15, 1855–1867. [Google Scholar] [CrossRef] [Green Version]
- Mummullage, S.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Use of physicochemical signatures to assess the sources of metals in urban road dust. Sci. Total Environ. 2016, 541, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Mihankhah, T.; Saeedi, M.; Karbassi, A. A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran’s urban area. Chemosphere 2020, 241, 124984. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Kłos, A.; Rajfur, M.; Wacławek, M. Application of enrichment factor (EF) to the interpretation of results from the biomonitoring studies. Ecol. Chem. Eng. S 2011, 18, 171–183. [Google Scholar]
- Binaku, K.; Schmeling, M. Multivariate statistical analyses of air pollutants and meteorology in Chicago during summers 2010–2012. Air Qual. Atmos. Health 2017, 10, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Alonso, D.; Pérez-Arribas, L.V.; Manzoor, S.; Cáceres, J.O. Statistical tools for air pollution assessment: Multivariate and spatial analysis studies in the Madrid region. J. Anal. Methods Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Das, A.; Kumar, R.; Patel, S.S.; Saha, M.C.; Guha, D. Source apportionment of potentially toxic elements in street dust of a coal mining area in Chhattisgarh, India, using multivariate and lead isotopic ratio analysis. Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Liu, J.; Bi, X.; Ning, Y.; Yang, S.; Yang, X. Apportionment of sources of heavy metals to agricultural soils us-ing isotope fingerprints and multivariate statistical analyses. Environ. Pollut. 2019, 249, 208–216. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Huang, W.; Fu, P.; Guinot, B.; Feng, X.; Shang, L.; Wang, Z.; Wang, Z.; Yuan, S.; et al. Isotopic composition for source identification of mercury in atmospheric fine particles. Atmos. Chem. Phys. 2016, 16, 11773–11786. [Google Scholar] [CrossRef] [Green Version]
- Fekiacova, Z.; Cornu, S.; Pichat, S. Tracing contamination sources in soils with Cu and Zn isotopic ratios. Sci. Total Environ. 2015, 517, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hua, G.; Yan, Y.; Yu, R.; Cui, J.; Wang, X.; Yan, Y. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmos. Environ. 2019, 201, 201–211. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, A.; Loredo, J.; De Miguel, E.; Charlesworth, S. Distribution of heavy metals in the street dusts and soils of an in-dustrial city in Northern Spain. Arch. Environ. Contam. Toxicol. 2003, 44, 160–170. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Mugivhisa, L.L.; Magoloi, Z.G. Composition of trace metals in dust samples collected from selected high schools in Pretoria, South Africa. Appl. Environ. Soil Sci. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rout, T.K.; Masto, R.; Ram, L.; George, J.; Padhy, P.K. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environ. Geochem. Health 2013, 35, 347–356. [Google Scholar] [CrossRef]
- Elom, N.I.; Entwistle, J.; Dean, J.R. Human health risk from Pb in urban street dust in northern UK cities. Environ. Chem. Lett. 2014, 12, 209–218. [Google Scholar] [CrossRef]
- Dytłow, S.; Górka-Kostrubiec, B. Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health 2021, 43, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.; Kang, U. Sand and dust storms: Impact mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Synoptic analysis of dust storms in the Middle East. Asia-Pac. J. Atmos. Sci. 2013, 49, 279–286. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, G.; Bi, X.; Li, Z.; Yu, G. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses. Atmos. Environ. 2013, 77, 9–15. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Delshab, H.; Soltani, N.; Sorooshian, A. Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran. Environ. Earth Sci. 2017, 76, 1–19. [Google Scholar] [CrossRef]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Ma, K.; Zhang, Y.; Mao, Q. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Appl. Geochem. 2013, 35, 88–98. [Google Scholar] [CrossRef]
- Rajaram, B.S.; Suryawanshi, P.V.; Bhanarkar, A.D.; Rao, C.V.C. Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 2014, 72, 3929–3938. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Tume, P.; Bech, J.; Sepulveda, B.; Tume, L.; Bech, J. Concentrations of heavy metals in urban soils of Talcahuano (Chile): A preliminary study. Environ. Monit. Assess. 2008, 140, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Benin, A.L.; Sargent, J.D.; Dalton, M.; Roda, S. High concentrations of heavy metals in neighborhoods near ore smelters in northern Mexico. Environ. Health Perspect. 1999, 107, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Adamson, I.Y.; Prieditis, H.; Vincent, R. Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol. Appl. Pharmacol. 1999, 157, 43–50. [Google Scholar] [CrossRef]
- Trifuoggi, M.; Pagano, G.; Oral, R.; Gravina, M.; Toscanesi, M.; Mozzillo, M.; Siciliano, A.; Burić, P.; Lyons, D.M.; Palumbo, A. Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district. Environ. Monit. Assess. 2019, 191, 43. [Google Scholar] [CrossRef] [PubMed]
- Andraos, C.; Gulumian, M. The toxicity of respirable South African mine tailings dust in relation to their physicochemical properties. Inhal. Toxicol. 2020, 32, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Prieditis, H.; Adamson, I. Comparative pulmonary toxicity of various soluble metals found in urban particulate dusts. Exp. Lung Res. 2002, 28, 563–576. [Google Scholar] [CrossRef]
- USEPA. Guidelines for Carcinogen Risk Assessment. 2005. Available online: https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment (accessed on 19 April 2021).
- Nielsen, E.; Ostergaard, G.; Larsen, J.C. Toxicological Risk Assessment of Chemicals: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- O’driscoll, C.A.; Owens, L.A.; Hoffmann, E.J.; Gallo, M.E.; Afrazi, A.; Han, M.; Fechner, J.H.; Schauer, J.J.; Bradfield, C.A.; Mezrich, J.D. Ambient urban dust particulate matter reduces pathologic T cells in the CNS and severity of EAE. Environ. Res. 2019, 168, 178–192. [Google Scholar] [CrossRef]
- Danielsen, P.H.; Loft, S.; Møller, P. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles. Part. Fibre Toxicol. 2008, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Goix, S.; Uzu, G.; Oliva, P.; Barraza, F.; Calas, A.; Castet, S.; Point, D.; Masbou, J.; Duprey, J.L.; Huayta, C. Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. J. Hazard. Mater. 2016, 317, 552–562. [Google Scholar] [CrossRef]
- Mirowsky, J.; Hickey, C.; Horton, L.; Blaustein, M.; Galdanes, K.; Peltier, R.E.; Chillrud, S.; Chen, L.C.; Ross, J.; Nadas, A.; et al. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal. Toxicol. 2013, 25, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Mun’im Mohd Han, N.; Latif, M.T.; Othman, M.; Dominick, D.; Mohamad, N.; Juahir, H.; Tahir, N.M. Composition of selected heavy metals in road dust from Kuala Lumpur city centre. Environ. Earth Sci. 2014, 72, 849–859. [Google Scholar]
- Han, X.; Lu, X.; Zhang, Q.; Hai, Q.; Pan, H. Grain-size distribution and contamination characteristics of heavy metal in street dust of Baotou, China. Environ. Earth Sci. 2016, 75, 468. [Google Scholar] [CrossRef]
- Hieu, N.T.; Lee, B.-K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2020, 98, 526–537. [Google Scholar] [CrossRef]
- Niu, J.; Rasmussen, P.E.; Hassan, N.M.; Vincent, R. Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water Air Soil Pollut. 2010, 213, 211–225. [Google Scholar] [CrossRef]
- Hammer, T.; Gao, H.; Pan, Z.; Wang, J. Relationship between aerosols exposure and lung deposition dose. Aerosol Air Qual Res. 2020, 20, 1083–1093. [Google Scholar] [CrossRef]
- Megido, L.; Suárez-Peña, B.; Negral, L.; Castrillón, L.; Suárez, S.; Fernández-Nava, Y.; Marañón, E. Relationship between physico-chemical characteristics and potential toxicity of PM10. Chemosphere 2016, 162, 73–79. [Google Scholar] [CrossRef]
- Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 2019, 169, 237–245. [Google Scholar] [CrossRef]
- Long, L.; He, J.; Yang, X. Characteristics, emission sources and health risk assessment of trace elements in size-segregated aerosols during haze and non-haze periods at Ningbo, China. Environ. Geochem. Health 2021, 1–19. [Google Scholar] [CrossRef]
- Liu, D. Review of mathematical models for health risk assessment: VII. chemical dose. Environ. Softw. 1994, 9, 153–160. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Acosta, J. Soil or dust for health risk assessment studies in urban environment. Arch. Environ. Contam. Toxicol. 2017, 73, 442–455. [Google Scholar] [CrossRef]
- İpek, M.; Ünlü, K. Development of human health risk-based soil quality standards for Turkey: Conceptual framework. Environ. Adv. 2020, 1, 100004. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part. F, Supplemental Guidance for Inhalation Risk Assessment). 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 15 April 2021).
- Rice, F.; Park, R.; Stayner, L.; Smith, R.; Gilbert, S.; Checkoway, H. Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers: A quantitative risk assessment. Occup. Environ. Med. 2001, 58, 38–45. [Google Scholar] [CrossRef] [Green Version]
- OEHHA. Cobalt and Cobalt Compounds Cancer Inhalation Unit Risk Factors. 2020. Available online: https://oehha.ca.gov/media/downloads/crnr/cobaltcpf100220.pdf (accessed on 20 April 2021).
- Chonokhuu, S.; Batbold, C.; Chuluunpurev, B.; Battsengel, E.; Dorjsuren, B.; Byambaa, B. Contamination and health risk assessment of heavy metals in the soil of major cities in mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef] [Green Version]
- Ghanavati, N.; Nazarpour, A.; De Vivo, B. Ecological and human health risk assessment of toxic metals in street dusts and surface soils in Ahvaz, Iran. Environ. Geochem. Health 2019, 41, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Shi, L.; Guang, A.-L.; Mu, Z.; Zhan, H.; Wu, Y. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China. Environ. Geochem. Health 2018, 40, 2007–2020. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Wu, Y. Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of China. Int. J. Environ. Res. Public Health 2017, 14, 886. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Wang, Y.; Zhou, Q. Human health risk assessment based on toxicity characteristic leaching procedure and simple bioaccessibility extraction test of toxic metals in urban street dust of Tianjin, China. PLoS ONE 2014, 9, e92459. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.F.; Dobaradaran, S.; Saeedi, R.; Nabipour, I.; Nazmara, S.; Abadi, D.R.V.; Arfaeinia, H.; Ramavandi, B.; Spitz, J.; Mohammadi, M.J. Levels and ecological and health risk assessment of PM 2.5-bound heavy metals in the northern part of the Persian Gulf. Environ. Sci. Pollut. Res. 2020, 27, 5305–5313. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T.; Matsumi, Y. The exposure of children to PM2. 5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicol. Environ. Saf. 2019, 170, 739–749. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Li, B.; Shen, Z.; Stenstrom, M.K. Profiles of lead in urban dust and the effect of the distance to multi-industry in an old heavy industry city in China. Ecotoxicol. Environ. Saf. 2017, 137, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ren, H.; Zhang, X. Distribution patterns of lead in urban soil and dust in Shenyang city, Northeast China. Environ. Geochem. Health 2006, 28, 53–59. [Google Scholar] [CrossRef]
- Tang, Z.; Chai, M.; Cheng, J.; Jin, J.; Yang, Y.; Nie, Z.; Huang, Q.; Li, Y. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol. Environ. Saf. 2017, 138, 83–91. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Q.; Guo, L.; Shen, Z. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Sci. Total Environ. 2018, 637, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Zgłobicki, W.; Telecka, M.; Skupiński, S. Assessment of short-term changes in street dust pollution with heavy metals in Lu-blin (E Poland)—Levels, sources and risks. Environ. Sci. Pollut. Res. 2019, 26, 35049–35060. [Google Scholar] [CrossRef] [Green Version]
- Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.M.; Dam, M.; De Temmerman, L.; et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ. Pollut. 2015, 200, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazo, P.; Steinnes, E.; Qarri, F.; Allajbeu, S.; Kane, S.; Stafilov, T.; Frontasyeva, M.V.; Harmens, H. Origin and spatial distribu-tion of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere 2018, 190, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Nkansah, M.A.; Darko, G.; Dodd, M.; Opoku, F.; Essuman, T.B.; Antwi-Boasiako, J. Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environ. Sci. 2017, 3, 1–19. [Google Scholar] [CrossRef]
- Uzoekwe, S.A.; Izah, S.C.; Aigberua, A.O. Environmental and human health risk of heavy metals in atmospheric particulate matter (PM 10) around gas flaring vicinity in Bayelsa State, Nigeria. Toxicol. Environ. Health Sci. 2021, 1–13. [Google Scholar] [CrossRef]
- Rashed, M.N. Total and extractable heavy metals in indoor, outdoor and street dust from Aswan City, Egypt. Clean Soil Air Water 2008, 36, 850–857. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
Method Used for Measuring Dust | References |
---|---|
Atomic Absorption Spectrophotometry (AAS) and Atomic Fluorescence Spectrophotometry (AFS) | [32,33] |
Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (ICP-DRC-MS). | [28] |
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) | [20,23,24,34] |
Atomic Absorption Spectrophotometry (AAS) | [5,17,26,27,35] |
Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Cold Vapor Generation-Atomic Fluorescence Spectrometry (CV-AFS, XGF-1011A) | [8,14,22] |
X-ray Spectrometry for Energy-Dispersive Spectroscopy (EDS) | [36] |
Energy-Dispersive X-ray Fluorescence Spectroscopy | [21,37] |
Flame Atomic Absorption Spectroscopy (FAAS) | [29] |
Energy-Dispersive X-ray Analysis (EDXRA) | [38] |
Metal | Max. Detected Conc. (mg/kg) | Country | Author |
---|---|---|---|
Ag | 141 | Nepal | [4] |
5.5 | Angola | [62] | |
4.55 | Spain | [63] | |
Cd | 55.8 | Nepal | [4] |
11.0 | China | [7] | |
0.85 | Iran | [13] | |
0.352 | Poland | [36] | |
4 | Angola | [62] | |
104 | Spain | [63] | |
2.54 | South Africa | [64] | |
0.78 | India | [65] | |
Co | 46.1 | Nepal | [4] |
7 | Angola | [62] | |
11.5 | Spain | [63] | |
36.2 | South Africa | [64] | |
16.9 | India | [65] | |
Cr | 712 | Nepal | [4] |
233 | China | [7] | |
105.9 | Iran | [13] | |
1058.7 | Mexico | [21] | |
60.2 | Colombia | [27] | |
211 | Poland | [36] | |
37 | Angola | [62] | |
54.5 | Spain | [63] | |
221.9 | South Africa | [64] | |
75.4 | India | [65] | |
Cu | 1250 | Nepal | [4] |
261 | China | [7] | |
232.5 | Iran | [13] | |
490.2 | Colombia | [27] | |
176.2 | Algeria | [35] | |
239 | Poland | [36] | |
118 | Angola | [62] | |
374 | Spain | [63] | |
157.2 | South Africa | [64] | |
56.8 | India | [65] | |
Ni | 210 | Nepal | [4] |
129 | China | [7] | |
117.9 | Iran | [13] | |
75.6 | Algeria | [35] | |
43.7 | Poland | [36] | |
32 | Angola | [62] | |
74.3 | South Africa | [64] | |
66 | India | [65] | |
Pb | 1070 | Nepal | [4] |
375 | China | [7] | |
234.3 | Iran | [13] | |
1070.1 | Mexico | [21] | |
1289.4 | Colombia | [27] | |
993.84 | Algeria | [35] | |
430 | Poland | [36] | |
1856 | Angola | [62] | |
964 | Spain | [63] | |
304.6 | South Africa | [64] | |
67.8 | India | [65] | |
558 | United Kingdom | [66] | |
Sb | 17.5 | Nepal | [4] |
9.45 | Iran | [13] | |
37 | Angola | [62] | |
9.00 | Spain | [63] | |
2.54 | South Africa | [64] | |
Fe | 1070 | Nepal | [4] |
50,298 | Poland | [36] | |
20,100 | Angola | [62] | |
Mn | 3480 | Nepal | [4] |
652 | Iran | [13] | |
974.4 | Algeria | [35] | |
728 | Angola | [62] | |
3.148 | Spain | [63] | |
392.4 | South Africa | [64] | |
658 | India | [65] | |
Zn | 2300 | Nepal | [4] |
2716 | China | [7] | |
778.3 | Iran | [13] | |
4426.4 | Mexico | [21] | |
387.6 | Colombia | [27] | |
1009 | Algeria | [35] | |
2030 | Poland | [36] | |
1412 | Angola | [62] | |
23,400 | Spain | [63] | |
754.3 | South Africa | [64] | |
163.6 | India | [65] | |
As | 13.8 | Nepal | [4] |
8.6 | Iran | [13] | |
7.8 | Angola | [62] | |
26 | Spain | [63] | |
5.02 | South Africa | [64] | |
4.1 | India | [65] | |
Hg | 4.504 | Iran | [13] |
0.57 | Angola | [62] | |
10.8 | Spain | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaonga, C.C.; Kosamu, I.B.M.; Utembe, W.R. A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment. Atmosphere 2021, 12, 891. https://doi.org/10.3390/atmos12070891
Kaonga CC, Kosamu IBM, Utembe WR. A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment. Atmosphere. 2021; 12(7):891. https://doi.org/10.3390/atmos12070891
Chicago/Turabian StyleKaonga, Chikumbusko Chiziwa, Ishmael Bobby Mphangwe Kosamu, and Wells Robert Utembe. 2021. "A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment" Atmosphere 12, no. 7: 891. https://doi.org/10.3390/atmos12070891
APA StyleKaonga, C. C., Kosamu, I. B. M., & Utembe, W. R. (2021). A Review of Metal Levels in Urban Dust, Their Methods of Determination, and Risk Assessment. Atmosphere, 12(7), 891. https://doi.org/10.3390/atmos12070891