Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter
Abstract
:1. Introduction
2. Experimental Methods
2.1. Observation Data
2.2. Model Setting
2.3. Input Data
2.4. Description of the Heterogeneous Chemistry Module
3. Results and Discussion
3.1. Model Evaluation of the Base Run
3.2. Improvement of the Heterogeneous Chemical Chemistry Module
3.3. Sensitivity Analysis and Parameter Optimization of the Heterogeneous Chemistry Module
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Wang, L.; Liu, J.; Gao, W.; Song, T.; Sun, Y.; Li, L.; Li, X.; Wang, Y.; Liu, L.; et al. Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environ. Int. 2020, 134, 105283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pan, X.; Uno, I.; Li, J.; Wang, Z.; Chen, X.; Fu, P.; Yang, T.; Kobayashi, H.; Shimizu, A. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China. Atmos. Environ. 2017, 159, 83–91. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, Y.; Peng, J.; Chen, L.; Sun, Y.; Duan, L.; Ge, X.; Li, Y.; Zhao, J.; Liu, C.; et al. An unexpected catalyst dominates formation and radiative forcing of regional haze. Proc. Natl. Acad. Sci. USA 2020, 117, 3960–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, M.; Wang, X.; Hu, Y.; Huang, X.; He, L.; Zhong, L.; Song, Y.; Hu, M.; Zhang, Y. Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model. Atmos. Environ. 2015, 112, 81–89. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Q.; Li, X.; Gao, Y.; Jia, X.; Sheng, J.; Liu, Y. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ. 2015, 122, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, Q.; Zhang, Y.; He, K.B.; Wang, K.; Zheng, G.J.; Duan, F.K.; Ma, Y.L.; Kimoto, T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 2015, 15, 2031–2049. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.L.; Song, W.; Yang, W.; Sun, X.C.; Tong, Y.D.; Wang, X.M.; Liu, C.Q.; Bai, Z.P.; Liu, X.Y. Influences of Atmospheric Pollution on the Contributions of Major Oxidation Pathways to PM2.5 Nitrate Formation in Beijing. J. Geophys. Res. Atmos. 2019, 124, 4174–4185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, S.; Li, J.; Yao, S.; Wang, X. Investigating the aerosol mass and chemical components characteristics and feedback effects on the meteorological factors in the Beijing-Tianjin-Hebei region, China. Environ. Pollut. 2019, 244, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, B.; Ji, D.; Cheng, M.; Gao, W.; Shi, S.; Xie, Y.; Yang, S.; Gao, M.; Fu, H.; et al. Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism. Sci. Total Environ. 2019, 687, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Xie, Z.; Zhang, P.; Song, S.; He, P.; Liu, C.; Wang, L.; Yu, X.; Kang, H. The role of sulfate and its corresponding S(IV)+NO2 formation pathway during the evolution of haze in Beijing. Sci. Total Environ. 2019, 687, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Wang, Y.; Zhang, R.; Yang, W.; Ma, Z.; Geng, W.; Bai, Z. Comparative statistical models for estimating potential roles of relative humidity and temperature on the concentrations of secondary inorganic aerosol: Statistical insights on air pollution episodes at Beijing during January 2013. Atmos. Environ. 2019, 212, 11–21. [Google Scholar] [CrossRef]
- Li, L.; Huang, C.; Huang, H.Y.; Wang, Y.J.; Yan, R.S.; Zhang, G.F.; Zhou, M.; Lou, S.R.; Tao, S.K.; Wang, H.L.; et al. An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River Delta in 2010. Atmos. Environ. 2014, 91, 60–70. [Google Scholar] [CrossRef]
- Dong, X.; Li, J.; Fu, J.S.; Gao, Y.; Huang, K.; Zhuang, G. Inorganic aerosols responses to emission changes in Yangtze River Delta, China. Sci. Total Environ. 2014, 481, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gao, Y.; Zhang, M.; Fu, J.; Zhu, J.; Liao, H.; Li, J.; Huang, K.; Ge, B.; Wang, X.; et al. MICS-Asia III: Multi-model comparison and evaluation of aerosol over East Asia. Atmos. Chem. Phys. 2019, 19, 11911–11937. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Han, Z.W.; Liu, Z.R.; Li, M.; Xin, J.Y.; Tao, Z.N.; Li, J.W.; Kang, J.E.; Huang, K.; Dong, X.Y.; et al. Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III)—Part 1: Overview and model evaluation. Atmos. Chem. Phys. 2018, 18, 4859–4884. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Tang, X.; Kong, L.; Liu, Z.; Wang, Z. Model Evaluation and Uncertainty Analysis of PM2.5 Components over Pearl River Delta Region Using Monte Carlo Simulations. Aerosol Air Qual. Res. 2020, 20. [Google Scholar] [CrossRef]
- Shao, J.; Chen, Q.; Wang, Y.; Lu, X.; He, P.; Sun, Y.; Shah, V.; Martin, R.V.; Philip, S.; Song, S.; et al. Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmos. Chem. Phys. 2019, 19, 6107–6123. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Fu, J.S.; Huang, K.; Tong, D.; Zhuang, G. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia. Atmos. Chem. Phys. 2016, 16, 8157–8180. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, X.; Wang, Z.; Du, H.; Yang, W.; Sun, Y.; Hu, B.; Li, J.; Wang, W.; Wang, T.; et al. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Sci. Total Environ. 2018, 622–623, 1327–1342. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; An, J.; Koo, B.; Yarwood, G.; Li, L. Sulfate formation during heavy winter haze events and the potential contribution from heterogeneous SO2 + NO2 reactions in the Yangtze River Delta region, China. Atmos. Chem. Phys. 2019, 19, 14311–14328. [Google Scholar] [CrossRef] [Green Version]
- Du, H.Y.; Li, J.; Chen, X.S.; Wang, Z.F.; Sun, Y.L.; Fu, P.Q.; Li, J.J.; Gao, J.; Wei, Y. Modeling of aerosol property evolution during winter haze episodes over a megacity cluster in northern China: Roles of regional transport and heterogeneous reactions of SO2. Atmos. Chem. Phys. 2019, 19, 9351–9370. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Gao, M.; Xu, W.; Shao, J.; Shi, G.; Wang, S.; Wang, Y.; Sun, Y.; McElroy, M. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 2018, 18, 7423–7438. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Bei, N.; Cao, J.; Huang, R.; Wu, J.; Feng, T.; Wang, Y.; Liu, S.; Zhang, Q.; Tie, X.; et al. A possible pathway for rapid growth of sulfate during haze days in China. Atmos. Chem. Phys. 2017, 17, 3301–3316. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.; Chen, Q.; Zheng, Y.; Cheng, X.; Sun, Y.; Palmer, P.I.; Shrivastava, M.; Guo, J.; Zhang, Q.; Liu, Y.; et al. Model bias in simulating major chemical components of PM2.5 in China. Atmos. Chem. Phys. 2020, 20, 12265–12284. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Y.; Hu, B.; Wen, T.; Xin, J.; Li, X.; Wang, Y. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 2017, 183, 119–131. [Google Scholar] [CrossRef]
- Li, J.; Dong, H.; Zeng, L.; Zhang, Y.; Shao, M.; Wang, Z.; Sun, Y.; Fu, P. Exploring Possible Missing Sinks of Nitrate and Its Precursors in Current Air Quality Models—A Case Simulation in the Pearl River Delta, China, Using an Observation-Based Box Model. SOLA 2015, 11, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhu, J.; Wang, Z.F.; Wang, M.; Gbaguidi, A.; Li, J.; Shao, M.; Tang, G.Q.; Ji, D.S. Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter. Atmos. Environ. 2013, 81, 676–686. [Google Scholar] [CrossRef]
- Walmsley, J.L.; Wesely, M.L. Modification of coded parametrizations of surface resistances to gaseous dry deposition. Atmos. Environ. 1996, 30, 1181–1188. [Google Scholar] [CrossRef]
- Chang, J.; Brost, R.; Isaksen, I.; Madronich, S.; Middleton, P.; Stockwell, W.; Walcek, C. A three-dimensional Eulerian acid deposition model: Physical concepts and formation. J. Geophys. Res. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Zaveri, R. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-L.; Niu, G.-Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.; Taubman, S.; Brown, P.; Iacono, M.; Clough, S. Radiative transfer for inhomogeneous atmospheres: RRTM, A validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. A multi-layer soil temperature model for MM5. In Proceedings of the 6th PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, USA, 22–24 July 1996; pp. 49–50. [Google Scholar]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.F.; Kuhn, U.; Stefani, P.; Knorr, W. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. Discuss. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP_v2: A mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. Discuss. 2015, 15, 12867–12909. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Zhuang, G.; Luo, G.; Sun, Y.; Wang, Q. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010. Atmos. Chem. Phys. 2012, 12, 7591–7607. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Slanina, J.; ten Brink, H.M.; Otjes, R.P.; Even, A.; Jongejan, P.; Khlystov, A.; Waijers-Ijpelaan, A.; Hu, M.; Lu, Y. The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): Extension and validation of the methodology. Atmos. Environ. 2001, 35, 2319–2330. [Google Scholar] [CrossRef]
- Pecorari, E.; Squizzato, S.; Longo, A.; Visin, F.; Rampazzo, G. Secondary inorganic aerosol evaluation: Application of a transport chemical model in the eastern part of the Po Valley. Atmos. Environ. 2014, 98, 202–213. [Google Scholar] [CrossRef]
- Ye, S.; Ma, T.; Duan, F.; Li, H.; He, H.; Xia, J.; Yang, S.; Zhu, L.; Ma, Y.; Huang, T.; et al. Characteristics and formation mechanisms of winter haze in Changzhou, a highly polluted industrial city in the Yangtze River Delta, China. Environ. Pollut. 2019, 253. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez Hernandez, M.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, H.; Nagashima, T.; Li, J.; Fu, J.; Ji, D.; Tan, J.; Wang, Z. Comparison of surface ozone simulation among selected regional models in MICS-Asia III—Effects of chemistry and vertical transport for the causes of difference. Atmos. Chem. Phys. 2019, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Lary, D.J.; Lee, A.M.; Toumi, R.; Newchurch, M.J.; Pirre, M.; Renard, J.B. Carbon aerosols and atmospheric photochemistry. J. Geophys. Res. Atmos. 1997, 102, 3671–3682. [Google Scholar] [CrossRef]
- Disselkamp, R.S.; Carpenter, M.A.; Cowin, J.P. A Chamber Investigation of Nitric Acid-Soot Aerosol Chemistry at 298 K. J. Atmos. Chem. 2000, 37, 113–123. [Google Scholar] [CrossRef]
- Rogaski, C.; Golden, D.; Williams, L. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4. Geophys. Res. Lett. 1997, 24, 381–384. [Google Scholar] [CrossRef]
- Deng, J.; Wang, T.; Liu, L.; Jiang, F. Modeling heterogeneous chemical processes on aerosol surface. Particuology 2010, 8, 308–318. [Google Scholar] [CrossRef]
- Underwood, G.; Song, C.-H.; Phadnis, M.; Carmichael, G.; Grassian, V. Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A combined laboratory and modeling study. J. Geophys. Res. 2001, 106, 18055–18066. [Google Scholar] [CrossRef]
- Dentener, F.J.; Carmichael, G.R.; Zhang, Y.; Lelieveld, J.; Crutzen, P.J. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. Atmos. 1996, 101, 22869–22889. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Ye, J.; Zhao, J.; Wu, Y.; Hu, J.; Liu, D.; Nie, D.; Shen, F.; Huang, X.; et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844. [Google Scholar] [CrossRef]
Sulfate | Nitrate | Ammonium | |
---|---|---|---|
R1 turned off | 0.7% | −1.5% | −0.3% |
R2 turned off | −1.8% | −16.3% | −8.5% |
R3 turned off | 0.8% | −0.6% | 0.15% |
R4 turned off | 0.9% | −0.5% | 0.2% |
R5 turned off | 1.6% | 3.0% | 2.2% |
R6 turned off | 0.9% | −0.6% | 0.2% |
R8 turned off | −12.2% | −20.6% | −16.3% |
R9 turned off | 8.0% | 77.7% | 38.7% |
R10 turned off | 0.1% | −2.67% | −1.3% |
Dust (R11–R22) turned off | 0.8% | −0.6% | 0.2% |
Sea salt aerosols (SSA) (R23–R28) turned off | −12.6% | 6.7% | −3.5% |
R29 turned off | −45.6% | 27.9% | −11.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Tang, X.; Kong, L.; Dao, X.; Lu, M.; Liu, Z.; Wang, W.; Wang, Q.; Chen, D.; Wu, L.; et al. Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter. Atmosphere 2021, 12, 578. https://doi.org/10.3390/atmos12050578
Wu Q, Tang X, Kong L, Dao X, Lu M, Liu Z, Wang W, Wang Q, Chen D, Wu L, et al. Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter. Atmosphere. 2021; 12(5):578. https://doi.org/10.3390/atmos12050578
Chicago/Turabian StyleWu, Qian, Xiao Tang, Lei Kong, Xu Dao, Miaomiao Lu, Zirui Liu, Wei Wang, Qian Wang, Duohong Chen, Lin Wu, and et al. 2021. "Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter" Atmosphere 12, no. 5: 578. https://doi.org/10.3390/atmos12050578
APA StyleWu, Q., Tang, X., Kong, L., Dao, X., Lu, M., Liu, Z., Wang, W., Wang, Q., Chen, D., Wu, L., Pan, X., Li, J., Zhu, J., & Wang, Z. (2021). Evaluation and Bias Correction of the Secondary Inorganic Aerosol Modeling over North China Plain in Autumn and Winter. Atmosphere, 12(5), 578. https://doi.org/10.3390/atmos12050578