Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Setup
2.2. Observational Data
2.3. Performance Metrics
3. Results and Discussion
3.1. Mean Temperature
3.2. Maximum Temperature
3.3. Minimum Temperature
3.4. Precipitation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F.; Gutowski, W.J. Coordinated Experiments for Projections of Regional Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Sedláček, J. Robustness and Uncertainties in the New CMIP5 Climate Model Projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Giorgi, F.; Gutowski, W.J. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 2015, 40, 467–490. [Google Scholar] [CrossRef]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.M.; et al. Regional Climate Downscaling over Europe: Perspectives from the EURO-CORDEX Community. Reg. Environ. Chang. 2020, 20, 51. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Approaches to the Simulation of Regional Climate Change: A Review. Rev. Geophys. 1991, 29, 191–216. [Google Scholar] [CrossRef]
- Flocas, H.A.; Hatzaki, M.; Tolika, K.; Anagnostopoulou, C.; Kostopoulou, E.; Giannakopoulos, C.; Kolokytha, E.; Tegoulias, I. Ability of RCM/GCM Couples to Represent the Relationship of Large Scale Circulation to Climate Extremes over the Mediterranean Region. Clim. Res. 2011, 46, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Rummukainen, M. State-of-the-Art with Regional Climate Models. WIREs Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Poan, E.D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G. Investigating Added Value of Regional Climate Modeling in North American Winter Storm Track Simulations. Clim. Dyn. 2018, 50, 1799–1818. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; García-Díez, M.; Goergen, K.; Güttler, I.; et al. The Simulation of European Heat Waves from an Ensemble of Regional Climate Models within the EURO-CORDEX Project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; Van Meijgaard, E.; et al. Regional Climate Modeling on European Scales: A Joint Standard Evaluation of the EURO-CORDEX RCM Ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, E.B.; Anders, I.; Lüthi, D.; Rockel, B.; Schär, C.; Seneviratne, S.I. Analysis of ERA 40-Driven CLM Simulations for Europe. Meteorol. Z. 2008, 17, 349–367. [Google Scholar] [CrossRef]
- van Roosmalen, L.; Christensen, J.H.; Butts, M.B.; Jensen, K.H.; Refsgaard, J.C. An Intercomparison of Regional Climate Model Data for Hydrological Impact Studies in Denmark. J. Hydrol. 2010, 380, 406–419. [Google Scholar] [CrossRef]
- Heikkilä, U.; Sandvik, A.; Sorteberg, A. Dynamical Downscaling of ERA-40 in Complex Terrain Using the WRF Regional Climate Model. Clim. Dyn. 2011, 37, 1551–1564. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Marinucci, M.R. An Investigation of the Sensitivity of Simulated Precipitation to Model Resolution and Its Implications for Climate Studies. Mon. Weather Rev. 1996, 124, 148–166. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.R.; Qian, Y. The Sensitivity of Precipitation and Snowpack Simulations to Model Resolution via Nesting in Regions of Complex Terrain. J. Hydrometeorol. 2003, 4, 1025–1043. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Wu, Z.; He, H.; Shi, J.; Ma, Y.; Weng, S. Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season. Atmosphere 2016, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, S.A.; Coppola, E.; Piani, C.; Giorgi, F. Resolution Effects on Regional Climate Model Simulations of Seasonal Precipitation over Europe. Clim. Dyn. 2010, 35, 685–711. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Fowler, H.J.; Blenkinsop, S.; Ferro, C.A.T.; Stephenson, D.B. Does Increasing the Spatial Resolution of a Regional Climate Model Improve the Simulated Daily Precipitation? Clim. Dyn. 2013, 41, 1475–1495. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Fox Maule, C.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef] [Green Version]
- Torma, C.; Giorgi, F.; Coppola, E. Added Value of Regional Climate Modeling over Areas Characterized by Complex Terrain-Precipitation over the Alps. J. Geophys. Res. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European Daily High-Resolution Gridded Data Set of Surface Temperature and Precipitation for 1950-2006. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Gobiet, A.; Suklitsch, M.; Truhetz, H.; Awan, N.K.; Keuler, K.; Georgievski, G. Added Value of Convection Permitting Seasonal Simulations. Clim. Dyn. 2013, 41, 2655–2677. [Google Scholar] [CrossRef] [Green Version]
- Katragkou, E.; Garciá-Diéz, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R.M.; Colette, A.; Fernandez, J.; Gobiet, A.; et al. Regional Climate Hindcast Simulations within EURO-CORDEX: Evaluation of a WRF Multi-Physics Ensemble. Geosci. Model Dev. 2015, 8, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, V.; Katragkou, E.; Prein, A.; Georgoulias, A.K.; Kartsios, S.; Zanis, P.; Karacostas, T. Investigating the Sensitivity to Resolving Aerosol Interactions in Downscaling Regional Model Experiments with WRFv3.8.1 over Europe. Geosci. Model Dev. 2020, 13, 2511–2532. [Google Scholar] [CrossRef]
- Knist, S.; Goergen, K.; Simmer, C. Evaluation and Projected Changes of Precipitation Statistics in Convection-Permitting WRF Climate Simulations over Central Europe. Clim. Dyn. 2020, 55, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.; López-Romero, J.M.; Turco, M.; Lorente-Plazas, R.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. On the Spin-Up Period in WRF Simulations Over Europe: Trade-Offs Between Length and Seasonality. J. Adv. Model. Earth Syst. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Cardell, M.F.; Romero, R.; Amengual, A.; Homar, V.; Ramis, C. A Quantile–Quantile Adjustment of the EURO-CORDEX Projections for Temperatures and Precipitation. Int. J. Climatol. 2019, 39, 2901–2918. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational Uncertainty and Regional Climate Model Evaluation: A Pan-European Perspective. Int. J. Climatol. 2019, 39, 3730–3749. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, G. Exploring Metrics of Extreme Daily Precipitation in a Large Ensemble of Regional Climate Model Simulations. Clim. Res. 2010, 44, 151–166. [Google Scholar] [CrossRef]
- Min, E.; Hazeleger, W.; Van Oldenborgh, G.J.; Sterl, A. Evaluation of Trends in High Temperature Extremes in North-Western Europe in Regional Climate Models. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, G.; Kjellström, E.; Hansson, U.; Strandberg, G.; Ullerstig, A. Evaluation and Future Projections of Temperature, Precipitation and Wind Extremes over Europe in an Ensemble of Regional Climate Simulations. Tellus Ser. Dyn. Meteorol. Oceanogr. 2011, 63, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Velikou, K.; Tolika, K.; Anagnostopoulou, C.; Zanis, P. Sensitivity Analysis of RegCM4 Model: Present Time Simulations over the Mediterranean. Theor. Appl. Climatol. 2019, 136, 1185–1208. [Google Scholar] [CrossRef]
- Fantini, A.; Raffaele, F.; Torma, C.; Bacer, S.; Coppola, E.; Giorgi, F.; Ahrens, B.; Dubois, C.; Sanchez, E.; Verdecchia, M. Assessment of Multiple Daily Precipitation Statistics in ERA-Interim Driven Med-CORDEX and EURO-CORDEX Experiments against High Resolution Observations. Clim. Dyn. 2018, 51, 877–900. [Google Scholar] [CrossRef]
- Bellprat, O.; Kotlarski, S.; Thi, D.L.; Schär, C. Exploring Perturbed Physics Ensembles in a Regional Climate Model. J. Clim. 2012, 25, 4582–4599. [Google Scholar] [CrossRef]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.D. Testing E-OBS European High-Resolution Gridded Data Set of Daily Precipitation and Surface Temperature. J. Geophys. Res. Atmospheres 2009, 114. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M.; McSweeney, C. The Influence of Interpolation and Station Network Density on the Distributions and Trends of Climate Variables in Gridded Daily Data. Clim. Dyn. 2010, 35, 841–858. [Google Scholar] [CrossRef]
- Maraun, D.; Osborn, T.J.; Rust, H.W. The Influence of Synoptic Airflow on UK Daily Precipitation Extremes. Part II: Regional Climate Model and E-OBS Data Validation. Clim. Dyn. 2012, 39, 287–301. [Google Scholar] [CrossRef]
- Boris, S. Correction of Precipitation Measurements: ETH/IAHS/WMO Workshop on the Correction of Precipitation Measurements, Zurich, 1–3 April 1985; ETH/IAHS/WMO Workshop on the Correction of Precipitation Measurements, Ed.; Geographisches Institut, Eidgenössische Technische Hochschule: Zürich, Switzerland, 1986. [Google Scholar]
- Prein, A.F.; Gobiet, A. Impacts of Uncertainties in European Gridded Precipitation Observations on Regional Climate Analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef]
- Mesinger, F. Bias Adjusted Precipitation Threat Scores. Adv. Geosci. 2008, 16, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the Convection-Resolving Regional Climate Modeling Approach in Decade-Long Simulations. J. Geophys. Res. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Fosser, G.; Khodayar, S.; Berg, P. Benefit of Convection Permitting Climate Model Simulations in the Representation of Convective Precipitation. Clim. Dyn. 2014, 44, 45–60. [Google Scholar] [CrossRef] [Green Version]
Observed | ||||
---|---|---|---|---|
Yes | No | Total | ||
Forecast | Yes | Hits (H) | False alarms (Z) | Forecast Yes (F = H + Z) |
No | Misses (Y) | Correct negatives (W) | Forecast No (Y + W) | |
Total | Observed Yes (O = H + Y) | Observed No (Z + W) | Total (N = H + Z + Y + W) |
D1 (36 km) | D2 (12 km) | D3 (4 km) | Δij (D2-D1) | Δij (D3-D2) | |
---|---|---|---|---|---|
Mean Observed | 10.22 | - | - | ||
Mean Predicted | 10.09 | 10.10 | 10.12 | - | - |
Positive ΜΒ | 0.48 | 0.34 | 0.32 | 0.40 | 0.13 |
Negative ΜΒ | −0.69 | −0.53 | −0.52 | −0.39 | −0.09 |
RMSE | 0.87 | 0.61 | 0.59 | 0.72 | 0.19 |
IoA | 0.97 | 0.98 | 0.99 | 0.98 | 1 |
MAE | 0.59 | 0.44 | 0.43 | 0.39 | 0.10 |
D1 (36 km) | D2 (12 km) | D3 (4 km) | Δij (D2-D1) | Δij (D3-D2) | |
---|---|---|---|---|---|
Mean Observed | 14.91 | - | - | ||
Mean Predicted | 14.33 | 14.41 | 14.44 | - | - |
Positive BIAS | 0.40 | 0.24 | 0.23 | 0.49 | 0.14 |
Negative BIAS | −0.87 | −0.68 | −0.64 | −0.50 | −0.11 |
RMSE | 1.14 | 0.81 | 0.76 | 0.82 | 0.22 |
IoA | 0.95 | 0.98 | 0.99 | 0.98 | 1.00 |
MAE | 0.76 | 0.59 | 0.56 | 0.49 | 0.13 |
D1 (36 km) | D2 (12 km) | D3 (4 km) | Δij (D2-D1) | Δij (D3-D2) | |
---|---|---|---|---|---|
Mean Observed | 5.73 | - | - | ||
Mean Predicted | 5.23 | 5.11 | 5.00 | - | - |
Positive BIAS | 0.55 | 0.44 | 0.39 | 0.40 | 0.12 |
Negative BIAS | −1.00 | −1.00 | −1.07 | −0.35 | −0.14 |
RMSE | 1.27 | 1.27 | 1.31 | 0.63 | 0.21 |
IoA | 0.92 | 0.92 | 0.92 | 0.98 | 1.00 |
MAE | 0.85 | 0.85 | 0.91 | 0.35 | 0.14 |
D1 (36 km) | D2 (12 km) | D3 (4 km) | Δij (D2-D1) | Δij (D3-D2) | |
---|---|---|---|---|---|
Mean Observed | 1.97 | - | - | ||
Mean Predicted | 2.49 | 2.48 | 2.42 | - | - |
Positive MB | 0.67 | 0.66 | 0.65 | 0.00 | 0.66 |
Negative MB | −0.38 | −0.35 | −0.33 | 4.97 | −2.51 |
RMSE | 0.81 | 0.80 | 0.79 | 2.44 | −0.48 |
IoA | 0.77 | 0.78 | 0.79 | −0.74 | 0.12 |
MAE | 0.62 | 0.62 | 0.60 | 0.96 | −1.39 |
D1 (36 km) | D2 (12 km) | D3 (4 km) | |
---|---|---|---|
BAETS | 0.421 | 0.417 | 0.423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-E.P. Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe. Atmosphere 2021, 12, 278. https://doi.org/10.3390/atmos12020278
Stergiou I, Tagaris E, Sotiropoulou R-EP. Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe. Atmosphere. 2021; 12(2):278. https://doi.org/10.3390/atmos12020278
Chicago/Turabian StyleStergiou, Ioannis, Efthimios Tagaris, and Rafaella-Eleni P. Sotiropoulou. 2021. "Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe" Atmosphere 12, no. 2: 278. https://doi.org/10.3390/atmos12020278
APA StyleStergiou, I., Tagaris, E., & Sotiropoulou, R. -E. P. (2021). Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe. Atmosphere, 12(2), 278. https://doi.org/10.3390/atmos12020278