Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models
Abstract
:1. Introduction
2. Experiments, Data and Methods
3. Results
3.1. Observation
3.2. CMIP6 Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murakami, T.; Matsumoto, J. Summer Monsoon over the Asian Continent and Western North Pacific. J. Meteorol. Soc. Jpn. 1994, 72, 719–745. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M. Interannual and interdecadal variations of the western North Pacific monsoon and the East Asian Baiu rainfall and their relationship to ENSO cycles. J. Meteor. Soc. Jpn. 1997, 75, 1109–1123. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Lin, H. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Zhou, T. Can a Regional Ocean–Atmosphere Coupled Model Improve the Simulation of the Interannual Variability of the Western North Pacific Summer Monsoon? J. Clim. 2013, 26, 2353–2367. [Google Scholar] [CrossRef]
- Lu, R. Interannual Variability of the Summertime North Pacific Subtropical High and its Relation to Atmospheric Convection over the Warm Pool. J. Meteorol. Soc. Jpn. 2001, 79, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Sun, F. Impacts of the Tropical Western Pacific on the East Asian Summer Monsoon. J. Meteorol. Soc. Jpn. 1992, 70, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Nitta, T. Convective Activities in the Tropical Western Pacific and Their Impact on the Northern Hemisphere Summer Circulation. J. Meteorol. Soc. Jpn. 1987, 65, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Tu, J.-Y.; Yu, J.-Y. Interannual Variability of the Western North Pacific Summer Monsoon: Differences between ENSO and Non-ENSO Years. J. Clim. 2003, 16, 2275–2287. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Climate 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Li, T. Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation. J. Clim. 2003, 16, 1195–1211. [Google Scholar] [CrossRef]
- Chen, J.-M.; Li, T.; Shih, C.-F. Fall Persistence Barrier of Sea Surface Temperature in the South China Sea Associated with ENSO. J. Clim. 2007, 20, 158–172. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Xie, S.-P.; Liu, Z.; Wu, L. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Wu, B.; Li, T.; Zhou, T. Relative Contributions of the Indian Ocean and Local SST Anomalies to the Maintenance of the Western North Pacific Anomalous Anticyclone during the El Niño Decaying Summer. J. Clim. 2010, 23, 2974–2986. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H.; Yasunari, T.; Kawamura, R. Abrupt Seasonal Change of Large-Scale Convective Activity over the Western Pacific in the Northern Summer. J. Meteorol. Soc. Jpn. 1995, 73, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.-I.; Hoskins, B. The Large-Scale Circulation Change at the End of the Baiu Season in Japan as Seen in ERA40 Data. J. Meteorol. Soc. Jpn. 2009, 87, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, Y.; Shi, X.; Li, Q.; Li, Q.; Liu, Y. Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC) Part II: The experimental seasonal prediction. Adv. Atmos. Sci. 2006, 23, 487–503. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Theor. Appl. Clim. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, H.; Li, W.; Liu, Y.; Chen, L.; Zhou, B.; Ding, Y. The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteorol. Res. 2017, 31, 261–277. [Google Scholar] [CrossRef]
- Ye, Q.; Glantz, M.H. The 1998 Yangtze floods: The use of short-term forecasts in the context of seasonal to interannual water resource management. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 159–182. [Google Scholar] [CrossRef]
- Dong, X.; Lin, R.; Fan, F. Comparison of the two modes of the Western Pacific subtropical high between early and late summer. Atmos. Sci. Lett. 2017, 18, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Kawatani, K.N.Y.; Tokioka, T. The North Pacific subtropical high characterized separately for June, July and August: Zonal displacement associated with submonthly variability. J. Meteorol. Soc. Jpn. 2008, 86, 505–530. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Dong, X.; Fan, F. Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer. Adv. Atmos. Sci. 2018, 35, 360–367. [Google Scholar] [CrossRef]
- Dong, X.; He, C. Zonal displacement of the Western North Pacific subtropical high from early to late summer. Int. J. Clim. 2020, 40, 5029–5041. [Google Scholar] [CrossRef]
- Song, F.; Zhou, T. Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection. J. Clim. 2014, 27, 1679–1697. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmospheric Sci. 2020, 37, 1–17. [Google Scholar] [CrossRef]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2012, 41, 2711–2744. [Google Scholar] [CrossRef]
- Inoue, T.; Ueda, H. Evaluation for the Seasonal Evolution of the Summer Monsoon over the Asian and Western North Pacific Sector in the WCRP CMIP3 Multi-model Experiments. J. Meteorol. Soc. Jpn. 2009, 87, 539–560. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Fan, F.-X.; Lin, R.-P.; Jin, J.-B.; Lian, R.-X. Simulation of the western North Pacific subtropical high in El Niño decaying summers by CMIP5 AGCMs. Atmos. Ocean. Sci. Lett. 2017, 10, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Dong, X.; Fan, F. Can coupled models perform better in the simulation of sub-seasonal evolution of the western North Pacific subtropical high than atmospheric models in boreal summer? Atmos. Sci. Lett. 2018, 19, e862. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Lin, R.; Zhou, T.; Qian, Y. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets. J. Clim. 2014, 27, 1271–1289. [Google Scholar] [CrossRef]
- He, C.; Li, T.; Zhou, W. Drier North American Monsoon in Contrast to Asian–African Monsoon under Global Warming. J. Clim. 2020, 33, 9801–9816. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Hirota, N.; Takayabu, Y.N.; Watanabe, M.; Kimoto, M. Precipitation Reproducibility over Tropical Oceans and Its Relationship to the Double ITCZ Problem in CMIP3 and MIROC5 Climate Models. J. Clim. 2011, 24, 4859–4873. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Y.; Sun, D.-Z. Cloud and Water Vapor Feedbacks to the El Niño Warming: Are They Still Biased in CMIP5 Models? J. Clim. 2013, 26, 4947–4961. [Google Scholar] [CrossRef]
- Lin, R.; Zhu, J.; Zheng, F. The Application of the SVD Method to Reduce Coupled Model Biases in Seasonal Predictions of Rainfall. J. Geophys. Res. Atmos. 2019, 124, 11837–11849. [Google Scholar] [CrossRef]
- Zhang, M.; Mariotti, A.; Lin, Z.; Ramasmamy, V.; Lamarque, J.; Xie, Z.; Zhu, J. Coordination to understand and reduce global model biases by U.S. and Chinese Institutions. Bull. Am. Meteorol. Soc. 2018, 99, ES109–ES113. [Google Scholar] [CrossRef] [Green Version]
Model ID | Institute | Atmospheric Resolution | Integration Period | ||
---|---|---|---|---|---|
AMIP | Historical | ||||
2 | BCC-CSM2-MR | Beijing Climate Center, China | 320 × 160 | 1979–2014 | 1850–2014 |
3 | BCC-ESM1 | 128 × 64 | |||
4 | CAMS-CSM1-0 | Chinese Academy of Meteorological Sciences, China | 320 × 160 | ||
5 | CanESM5 | Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada | 128 × 64 | ||
6 | CESM2 | National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA | 288 × 192 | ||
7 | CESM2-FV2 | 144 × 96 | |||
8 | CESM2-WACCM | 288 × 192 | |||
9 | CESM2-WACCM-FV2 | 144 × 96 | |||
10 | CIESM | Department of Earth System Science, Tsinghua University, China | 288 × 192 | ||
11 | E3SM-1-0 | LLNL; ANL; BNL; LANL; LBNL; ORNL; PNNL; SNL; USA | 360 × 180 | ||
12 | EC-Earth3-Veg | EC-Earth-Consortium | 512 × 256 | ||
13 | FGOALS-f3-L | Chinese Academy of Sciences, China | 288 × 180 | ||
14 | FGOALS-g3 | 180 × 80 | |||
15 | FIO-ESM-2-0 | First Institute of Oceanography, State Oceanic Administration, Qingdao National Laboratory for Marine Science and Technology, China | 288 × 192 | ||
16 | IITM-ESM | Indian Institute of Tropical Meteorology, India | 192 × 94 | ||
17 | INM-CM4-8 | Institute for Numerical Mathematics, Russian Academy of Science, Russia | 180 × 120 | ||
18 | INM-CM5-0 | 180 × 120 | |||
19 | KACE-1-0-G | National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Republic of Korea | 192 × 144 | ||
20 | MIROC6 | JAMSTEC, AORI, NIES, and R-CCS, Japan | 256 × 128 | ||
21 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | 384 × 192 | ||
22 | MRI-ESM2-0 | Meteorological Research Institute, Tsukuba, Japan | 320 × 160 | ||
23 | NESM3 | Nanjing University of Information Science and Technology, China | 192 × 96 | ||
24 | NorCPM1 | NorESM Climate modeling Consortium consisting of CICERO, MET-Norway, NERSC, NILU, UiB and UNI, Norway | 144 × 96 | ||
25 | NorESM2-LM | ||||
26 | SAM0-UNICON | Seoul National University, Republic of Korea | 288 × 192 | ||
27 | TaiESM1 | Research Center for Environmental Changes, Academia Sinica, Nankang, Taiwan | 288 × 192 |
Abbreviations | Full Names |
---|---|
LLNL | Lawrence Livermore National Laboratory |
ANL | Argonne National Laboratory |
BNL | Brookhaven National Laboratory |
LANL | Los Alamos National Laboratory |
LBNL | Lawrence Berkeley National Laboratory |
ORNL | Oak Ridge National Laboratory |
PNNL | Pacific Northwest National Laboratory |
SNL | Sandia National Laboratories |
JAMSTEC | Japan Agency for Marine-Earth Science and Technology |
AORI | Atmosphere and Ocean Research Institute, the University of Tokyo |
NIES | National Institute for Environmental Studies |
R-CCS | RIKEN Center for Computational Science |
CICERO | Center for International Climate and Environmental Research |
MET | Norwegian Meteorological Institute |
NERSC | Nansen Environmental and Remote Sensing Center |
NILU | Norwegian Institute for Air Research |
UiB | University of Bergen |
UiO | University of Oslo |
UNI | Uni Research |
Models | Correlation | SDR | Skill | |||
---|---|---|---|---|---|---|
AMIP | Historical | AMIP | Historical | AMIP | Historical | |
MME | 0.40 | 0.80 | 0.54 | 0.70 | 0.34 | 0.72 |
BCC-CSM2-MR | 0.42 | 0.50 | 0.92 | 1.09 | 0.50 | 0.56 |
BCC-ESM1 | 0.45 | 0.40 | 1.30 | 0.96 | 0.49 | 0.49 |
CAMS-CSM1-0 | 0.68 | 0.63 | 1.46 | 1.41 | 0.61 | 0.59 |
CanESM5 | 0.37 | 0.63 | 0.94 | 1.10 | 0.46 | 0.66 |
CESM2 | 0.05 | 0.72 | 0.75 | 1.13 | 0.26 | 0.73 |
CESM2-FV2 | −0.17 | 0.63 | 0.78 | 0.83 | 0.16 | 0.65 |
CESM2-WACCM | −0.24 | 0.68 | 0.99 | 1.04 | 0.15 | 0.71 |
CESM2-WACCM-FV2 | −0.36 | 0.54 | 0.94 | 0.85 | 0.10 | 0.57 |
CIESM | −0.16 | 0.64 | 1.16 | 1.07 | 0.17 | 0.67 |
E3SM-1-0 | 0.32 | 0.73 | 0.59 | 1.09 | 0.33 | 0.74 |
EC-Earth3-Veg | 0.66 | 0.70 | 1.13 | 1.09 | 0.68 | 0.72 |
FGOALS-f3-L | 0.16 | 0.47 | 0.97 | 0.81 | 0.34 | 0.51 |
FGOALS-g3 | 0.07 | 0.50 | 1.48 | 1.26 | 0.25 | 0.53 |
FIO-ESM-2-0 | 0.34 | 0.65 | 0.75 | 0.96 | 0.42 | 0.68 |
IITM-ESM | 0.35 | 0.67 | 0.95 | 1.11 | 0.46 | 0.69 |
INM-CM4-8 | 0.11 | 0.39 | 0.98 | 1.09 | 0.31 | 0.48 |
INM-CM5-0 | 0.20 | 0.44 | 1.03 | 1.19 | 0.36 | 0.50 |
KACE-1-0-G | 0.43 | 0.56 | 0.95 | 1.48 | 0.51 | 0.53 |
MIROC6 | −0.04 | 0.23 | 1.25 | 0.93 | 0.22 | 0.37 |
MPI-ESM1-2-HR | 0.27 | 0.54 | 0.91 | 1.19 | 0.40 | 0.57 |
MRI-ESM2-0 | 0.31 | 0.65 | 0.94 | 1.13 | 0.43 | 0.67 |
NESM3 | 0.55 | −0.01 | 1.34 | 0.77 | 0.55 | 0.23 |
NorCPM1 | 0.01 | 0.58 | 0.71 | 0.72 | 0.23 | 0.56 |
NorESM2-LM | −0.03 | 0.63 | 0.84 | 1.04 | 0.23 | 0.66 |
SAM0-UNICON | 0.05 | 0.56 | 1.06 | 0.97 | 0.28 | 0.61 |
TaiESM1 | 0.12 | 0.67 | 0.75 | 0.91 | 0.29 | 0.69 |
Models | Correlation | SDR | Skill | |||
---|---|---|---|---|---|---|
AMIP | Historical | AMIP | Historical | AMIP | Historical | |
MME | 0.38 | 0.73 | 0.59 | 0.77 | 0.36 | 0.69 |
BCC-CSM2-MR | 0.29 | 0.47 | 1.03 | 1.14 | 0.42 | 0.53 |
BCC-ESM1 | 0.40 | 0.37 | 1.27 | 1.00 | 0.46 | 0.47 |
CAMS-CSM1-0 | 0.47 | 0.43 | 1.46 | 1.60 | 0.47 | 0.41 |
CanESM5 | 0.31 | 0.54 | 1.06 | 1.30 | 0.43 | 0.55 |
CESM2 | 0.11 | 0.61 | 0.88 | 1.18 | 0.30 | 0.63 |
CESM2-FV2 | −0.15 | 0.60 | 0.93 | 0.97 | 0.18 | 0.64 |
CESM2-WACCM | −0.18 | 0.62 | 1.10 | 1.14 | 0.17 | 0.65 |
CESM2-WACCM-FV2 | −0.26 | 0.47 | 1.06 | 0.98 | 0.14 | 0.54 |
CIESM | −0.15 | 0.64 | 1.21 | 1.16 | 0.17 | 0.66 |
E3SM-1-0 | 0.36 | 0.60 | 0.82 | 1.41 | 0.44 | 0.57 |
EC-Earth3-Veg | 0.65 | 0.61 | 1.34 | 1.25 | 0.62 | 0.62 |
FGOALS-f3-L | 0.19 | 0.52 | 1.08 | 0.96 | 0.35 | 0.58 |
FGOALS-g3 | 0.28 | 0.26 | 1.80 | 1.85 | 0.29 | 0.28 |
FIO-ESM-2-0 | 0.37 | 0.62 | 0.84 | 1.04 | 0.46 | 0.65 |
IITM-ESM | 0.23 | 0.57 | 1.15 | 1.45 | 0.37 | 0.54 |
INM-CM4-8 | 0.20 | 0.45 | 0.85 | 0.94 | 0.35 | 0.53 |
INM-CM5-0 | 0.33 | 0.49 | 0.94 | 1.12 | 0.44 | 0.55 |
KACE-1-0-G | 0.40 | 0.52 | 1.00 | 1.63 | 0.49 | 0.46 |
MIROC6 | −0.02 | 0.16 | 1.23 | 1.13 | 0.23 | 0.33 |
MPI-ESM1-2-HR | 0.28 | 0.48 | 0.98 | 1.26 | 0.41 | 0.52 |
MRI-ESM2-0 | 0.34 | 0.49 | 1.12 | 1.33 | 0.44 | 0.51 |
NESM3 | 0.44 | 0.16 | 1.33 | 0.87 | 0.48 | 0.33 |
NorCPM1 | 0.01 | 0.51 | 0.77 | 0.84 | 0.24 | 0.56 |
NorESM2-LM | 0.04 | 0.54 | 0.93 | 1.14 | 0.27 | 0.58 |
SAM0-UNICON | 0.18 | 0.58 | 1.23 | 1.11 | 0.33 | 0.61 |
TaiESM1 | 0.15 | 0.61 | 0.89 | 1.02 | 0.33 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Lin, R. Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models. Atmosphere 2021, 12, 664. https://doi.org/10.3390/atmos12060664
Dong X, Lin R. Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models. Atmosphere. 2021; 12(6):664. https://doi.org/10.3390/atmos12060664
Chicago/Turabian StyleDong, Xiao, and Renping Lin. 2021. "Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models" Atmosphere 12, no. 6: 664. https://doi.org/10.3390/atmos12060664
APA StyleDong, X., & Lin, R. (2021). Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models. Atmosphere, 12(6), 664. https://doi.org/10.3390/atmos12060664