Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Spatial and Temporal Variability of Vertical Wind Shear
3.2. Correlations between Vertical Wind Shear vs. El Niño and Subtropical Indian Ocean Dipole (SIOD)
3.3. Vertical Wind Shear vs. Tropical Cyclone Genesis and Intensity
VWS vs. TC Genesis and Intensity Correlations
3.4. Vertical Wind Shear vs. TC Landfall Coast
3.5. Potential Role of Different Environmental Factors to the Cyclogenesis in the MC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Software
References
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Chan, K.T.F.; Wang, D.; Zhang, Y.; Wanawong, W.; He, M.; Yu, X. Does strong vertical wind shear certainly lead to the weakening of a tropical cyclone? Environ. Res. Commun. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Emanuel, K.; DesAutels, C.; Holloway, C.; Korty, R. Environmental control of tropical cyclone intensity. J. Atmos. Sci. 2004, 61, 843–856. [Google Scholar] [CrossRef]
- Finocchio, P.M.; Majumdar, S.J. A Statistical Perspective on Wind Profiles and Vertical Wind Shear in Tropical Cyclone Environments of the Northern Hemisphere. Mon. Weather Rev. 2017, 145, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Aiyyer, A.R.; Thorncroft, C. Climatology of Vertical Wind Shear over the Tropical Atlantic. J. Clim. 2006, 19, 2969–2983. [Google Scholar] [CrossRef]
- Nolan, D.S.; McGauley, M.G. Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. In Cyclones: Formation, Triggers and Control; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 1–36. [Google Scholar]
- Jones, J.J.; Bell, M.M.; Klotzbach, P.J. Tropical and Subtropical North Atlantic Vertical Wind Shear and Seasonal Tropical Cyclone Activity. J. Clim. 2020, 33, 5413–5426. [Google Scholar] [CrossRef] [Green Version]
- Molinari, J.; Vollaro, D. Rapid Intensification of a Sheared Tropical Storm. Mon. Weather Rev. 2010, 138, 3869–3885. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Lussier, L.L., III; Moore, R.W.; Wang, Z. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys. 2010, 10, 9879–9900. [Google Scholar] [CrossRef] [Green Version]
- Rios-Berrios, R.; Torn, R.D.; Davis, C.A. An Ensemble Approach to Investigate Tropical Cyclone Intensification in Sheared Environments. Part II: Ophelia (2011). J. Atmos. Sci. 2016, 73, 1555–1575. [Google Scholar] [CrossRef]
- Mundell, D.B. Prediction of Tropical Cyclone Rapid Intensification Events. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 1990. [Google Scholar]
- DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 1996, 53, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Zehr, R.M. Environmental vertical wind shear with Hurricane Bertha (1996). Weather Forecast. 2003, 18, 345–356. [Google Scholar] [CrossRef]
- Bracken, W.E.; Bosart, L.F. The role of Synoptic-Scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Weather Rev. 2000, 128, 353–376. [Google Scholar] [CrossRef]
- Zehr, R.M. Tropical Cyclogenesis in the Western North Pacific; NOAA Technical Report NESDIS 61; NOAA: St. Petersburg, FL, USA, 1992; p. 181. [Google Scholar]
- Fink, H.A.; Speth, P. Tropical cyclones. Naturwissenschaften 1998, 85, 482–493. [Google Scholar] [CrossRef]
- Ho, C.-H.; Kim, J.-H.; Jeong, J.-H.; Kim, H.-S.; Chen, D. Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden-Julian Oscillation effects. J. Geophys. Res. 2006, 111, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mavume, A.F.; Rydberg, L.; Rouault, M.; Lutjeharms, J.R.E. Climatology and landfall of tropical cyclones in the SouthWest Indian Ocean. J. Mar. Sci. 2009, 8, 15–36. [Google Scholar]
- Malherbe, J.; Engelbrecht, F.A.; Landman, W.A.; Engelbrecht, C.J. Tropical systems from the southwest Indian Ocean making landfall over the Limpopo River Basin, southern Africa: A historical perspective. Int. J. Climatol. 2012, 32, 1018–1032. [Google Scholar] [CrossRef] [Green Version]
- WMO. Global Guide to Tropical Cyclone Forecasting; Guard, C., Ed.; WMO: Geneva, Switzerland, 2017; p. 399. Available online: http://www.wmo.int/cycloneguide/pdf/Global-Guide-to-TropicalCyclone-Forecasting.pdf (accessed on 7 January 2020).
- Leroux, M.-D.; Meister, J.; Mekies, D.; Dorla, A.-L. A Climatology of Southwest Indian Ocean Tropical Systems: Their Number, Tracks, Impacts, Sizes, Empirical Maximum Potential Intensity, and Intensity Changes. J. Appl. Meteorol. Climatol. 2018, 57, 1021–1041. [Google Scholar] [CrossRef]
- Bousquet, O.; Barruol, G.; Cordier, E.; Barthe, C.; Bielli, S.; Calmer, R.; Rindraharisaona, E.; Roberts, G.; Tulet, P.; Amelie, V.; et al. Impact of Tropical Cyclones on Inhabited Areas of the SWIO Basin at Present and Future Horizons. Part 1: Overview and Observing Component of the Research Project RENOVRISK-CYCLONE. Atmosphere 2021, 12, 544. [Google Scholar] [CrossRef]
- Chen, S.S.; Knaff, J.A.; Marks, F.D., Jr. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Bessafi, M.; Wheeler, M.C. Modulation of South Indian Ocean Tropical Cyclones by the Madden–Julian Oscillation and Convectively Coupled Equatorial Waves. Mon. Weather Rev. 2006, 134, 638–656. [Google Scholar] [CrossRef]
- Kuleshov, Y.; Ming, F.C.; Qi, L.; Chouaibou, I.; Hoareau, C.; Roux, F. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO. Ann. Geophys. 2009, 27, 2523–2538. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R.; Pathack, B. A study of climate and weather variability over the tropical Southwest Indian Ocean. Meteorol. Atmos. Phys. 1991, 47, 37–48. [Google Scholar] [CrossRef]
- Jury, M.R. A preliminary study of climatological associations and characteristics of tropical cyclones in the SW Indian Ocean. Meteor. Atmos. Phys. 1993, 51, 101–115. [Google Scholar] [CrossRef]
- Matyas, C.J. Tropical cyclone formation and motion in the Mozambique Channel. Int. J. Climatol. 2015, 35, 375–390. [Google Scholar] [CrossRef]
- Barimalala, R.; Blamey, R.C.; Desbiolles, F.; Reason, C.J.C. Variability in the Mozambique Channel Trough and Impacts on Southeast African Rainfall. J. Clim. 2020, 33, 749–765. [Google Scholar] [CrossRef]
- Cook, H.H. The South Indian Convergence Zone and Interannual Rainfall Variability over Southern Africa. J. Clim. 2000, 13, 3789–3804. [Google Scholar] [CrossRef]
- Barimalala, R.; Desbiolles, F.; Blamey, R.C.; Reason, C. Madagascar Influence on the South Indian Ocean Convergence Zone, the Mozambique Channel Trough and Southern African Rainfall. Geophys. Res. Lett. 2018, 45, 11380–11389. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. B. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved in Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Torn, R.D. Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear. Mon. Weather Rev. 2017, 145, 1717–1738. [Google Scholar] [CrossRef]
- Bahera, S.K.; Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 2001, 28, 327–330. [Google Scholar] [CrossRef]
Period | Niño-3.4 vs. 200–850 hPa VWS | SIOD vs. 200–850 hPa VWS |
---|---|---|
September–November (SON) | 0.34 | |
October–December (OND) | 0.37 | −0.34 |
November–January (NDJ) | 0.40 | −0.40 |
December–February (DJF) | 0.43 | −0.41 |
January–March (JFM) | 0.50 | −0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manhique, A.J.; Guirrugo, I.A.; Nhantumbo, B.J.; Mavume, A.F. Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel. Atmosphere 2021, 12, 739. https://doi.org/10.3390/atmos12060739
Manhique AJ, Guirrugo IA, Nhantumbo BJ, Mavume AF. Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel. Atmosphere. 2021; 12(6):739. https://doi.org/10.3390/atmos12060739
Chicago/Turabian StyleManhique, Atanásio João, Isac Arnaldo Guirrugo, Bernardino João Nhantumbo, and Alberto Francisco Mavume. 2021. "Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel" Atmosphere 12, no. 6: 739. https://doi.org/10.3390/atmos12060739
APA StyleManhique, A. J., Guirrugo, I. A., Nhantumbo, B. J., & Mavume, A. F. (2021). Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel. Atmosphere, 12(6), 739. https://doi.org/10.3390/atmos12060739