Extreme Translation Events of Atlantic Tropical Cyclones
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Roberts, M.; Vidale, P.L.; Vanniere, B.; Caron, L.-P.; Putrasahan, D.; Roberts, C.; Senan, R.; et al. Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA project. Clim. Dyn. 2021. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Murakami, H. Rainfall from tropical cyclones: High-resolution simulations and seasonal forecasts. Clim. Dyn. 2019, 52, 5269–5289. [Google Scholar] [CrossRef]
- Gao, S.; Mao, J.; Zhang, W.; Zhang, F.; Shen, X. Atmospheric moisture shapes increasing tropical cyclone precipitation in Southern China over the past four decades. Environ. Res. Lett. 2021, 16, 034004. [Google Scholar] [CrossRef]
- Zhu, L.; Quiring, S.M.; Emanuel, K.A. Estimating tropical cyclone precipitation risk in Texas. Geophys. Res. Lett. 2013, 40, 6225–6230. [Google Scholar] [CrossRef]
- Lin, N.; Smith, J.A.; Villarini, G.; Marchok, T.P.; Baeck, M.L. Modeling extreme rainfall, winds, and surge from hurricane Isabel (2003). Weather Forecast. 2010, 25, 1342–1361. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Marchok, T.; Vecchi, G.A. Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of tropical cyclones to rainfall at the global scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA 2017, 114, 12681–12684. [Google Scholar] [CrossRef] [Green Version]
- Risser, M.D.; Wehner, M.F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane Harvey. Geophys. Res. Lett. 2017, 44, 12457–12464. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Oldenborgh, G.J.; van Wiel, K.; van der Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. Attribution of extreme rainfall from hurricane Harvey, August 2017. Environ. Res. Lett. 2017, 12, 124009. [Google Scholar] [CrossRef]
- Wang, S.-Y.S.; Zhao, L.; Yoon, J.-H.; Klotzbach, P.; Gillies, R.R. Quantitative attribution of climate effects on hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 2018, 13, 054014. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Champion, S.M. An assessment of rainfall from hurricanes Harvey and florence relative to other extremely wet storms in the United States. Geophys. Res. Lett. 2019, 46, 13500–13506. [Google Scholar] [CrossRef] [Green Version]
- DeHart, J.C.; Bell, M.M. A comparison of the polarimetric radar characteristics of heavy rainfall from hurricanes Harvey (2017) and Florence (2018). J. Geophys. Res. Atmos. 2020, 125, e2019JD032212. [Google Scholar] [CrossRef]
- Callaghan, J. Extreme rainfall and flooding from hurricane Florence. Trop. Cyclone Res. Rev. 2020, 9, 172–177. [Google Scholar] [CrossRef]
- Reed, K.A.; Stansfield, A.M.; Wehner, M.F.; Zarzycki, C.M. Forecasted attribution of the human influence on hurricane Florence. Sci. Adv. 2020, 6, eaaw9253. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Hall, T.M.; Kossin, J.P. Hurricane stalling along the North American coast and implications for rainfall. NPJ Clim. Atmos. Sci. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Patricola, C.M. Tropical cyclones are becoming sluggish. Nature 2018, 558, 36–37. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.-J.; Kim, S.-H.; Chan, J.C.L. Climate change and tropical cyclone trend. Nature 2019, 570, E3–E5. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Chan, J.C.L.; Moon, I.-J.; Yoshida, K.; Mizuta, R. Global warming changes tropical cyclone translation speed. Nat. Commun. 2020, 11, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.T.F. Are global tropical cyclones moving slower in a warming climate? Environ. Res. Lett. 2019, 14, 104015. [Google Scholar] [CrossRef]
- Lanzante, J.R. Uncertainties in tropical-cyclone translation speed. Nature 2019, 570, E6–E15. [Google Scholar] [CrossRef] [PubMed]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Global warming and the weakening of the tropical circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Murakami, H.; Knutson, T.R.; Mizuta, R.; Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 2020, 6, eaaz7610. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Moon, I.-J.; Chu, P.-S. An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environ. Res. Lett. 2020, 15, 094084. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Lee, C.-Y.; Nabizadeh, E.; Camargo, S.J.; Ma, D.; Yeung, L.Y. Effects of climate change on the movement of future landfalling Texas tropical cyclones. Nat. Commun. 2020, 11, 3319. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
Regression Coefficients | p-Value | |
---|---|---|
Year | 0.0207 | 0.00 |
Land/Ocean | −1.985 | 0.00 |
Fast/Slow | −0.0593 | 0.60 |
Interaction: Year and Land/Ocean | −0.00228 | 0.60 |
Interaction: Year and Fast/Slow | −0.00112 | 0.74 |
Regression Coefficients | p-Value | |
GPH | 0.0218 | 0.00 |
Fast/Slow | 202.98 | 0.00 |
Interaction: GPH and Fast/Slow | −0.035459 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W. Extreme Translation Events of Atlantic Tropical Cyclones. Atmosphere 2021, 12, 1032. https://doi.org/10.3390/atmos12081032
Zhang W. Extreme Translation Events of Atlantic Tropical Cyclones. Atmosphere. 2021; 12(8):1032. https://doi.org/10.3390/atmos12081032
Chicago/Turabian StyleZhang, Wei. 2021. "Extreme Translation Events of Atlantic Tropical Cyclones" Atmosphere 12, no. 8: 1032. https://doi.org/10.3390/atmos12081032
APA StyleZhang, W. (2021). Extreme Translation Events of Atlantic Tropical Cyclones. Atmosphere, 12(8), 1032. https://doi.org/10.3390/atmos12081032