Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Leaf Sampling
2.2. Quantity of PM Accumulation on Leaf Surface, In-Wax, and Epicuticular Wax (EW)
2.3. Biochemical Characteristics of Leaf
2.3.1. Leaf Extract pH (pH)
2.3.2. Relative Leaf Water Content (RWC)
2.3.3. Chlorophyll and Carotenoid Content
Chl b = (20.13 × A644.8) − (4.19 × A616.6)
Chl a + b = (7.05 × A616.6) + (18.09 × A644.8)
Carotenoids = (1000 × A470) − (1.90 × Chl a − 63.14 × Chl b)/214
2.3.4. Ascorbic Acid
2.4. APTI
2.5. API
2.6. Statistical Analysis
3. Results and Discussion
3.1. PM Accumulation on Leaf Surface and In-Wax
3.2. Biochemical Characteristic of Leaf
3.3. APTI
3.4. API
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Bates, C.; Oleksyn, J. Accumulation of particulate matter, heavy metals, and polycyclic aromatic hydrocarbons on the leaves of Tilia cordata Mill. in five Polish cities with different levels of air pollution. Int. J. Phytoremedaiation. 2017, 19, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
- Mo, L.; Ma, Z.; Xu, Y.; Sun, F.; Lun, X.; Liu, X.; Chen, J.; Yu, X. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmos. Environ. 2019, 202, 328–344. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Grabowski, M. Influence of particulate matter accumulation on photosynthetic apparatus of Physocarpus opulifolius and Sorbaria sorbifolia. Polish J. Environ. Stud. 2018, 27, 2391–2396. [Google Scholar] [CrossRef]
- Kwon, K.J.; Urrintuya, O.; Kim, S.Y.; Yang, J.C.; Sung, J.W.; Park, B.J. Removal potential of particulate matter of 12 woody plant species for landscape planting. J. People Plants Environ. 2020, 23, 647–654. [Google Scholar] [CrossRef]
- Kwon, K.J.; Odsuren, U.; Kim, S.Y.; Yang, J.C.; Park, B.J. Comparison of the particulate matter removal capacity of 11 herbaceous landscape plants. J. People Plants Environ. 2021, 24, 267–275. [Google Scholar] [CrossRef]
- Singh, S.K.; Rao, D.N.; Agrawal, M.; Pandey, J.; Naryan, D. Air pollution tolerance index of plants. J. Environ. Manag. 1991, 32, 45–55. [Google Scholar] [CrossRef]
- Shannigrahi, A.S.; Fukushima, T.; Sharma, R.C. Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: An overview. Int. J. Environ. Stud. 2004, 61, 125–137. [Google Scholar] [CrossRef]
- Kong, W.S. The Biogeographic divisions of Korea and their species composition. J. Korean Geogr. Soc. 1989, 40, 43–54. [Google Scholar]
- Kim, Y.S.; Song, K.J.; Ahn, Y.H.; Oh, K.K.; Lee, K.J.; Lee, Y.M.; Jeong, S.J. Handbook of Korean Landscape Woody Plants, 3rd ed.; Kwangil Publishing Co.: Seoul, Korea, 2010; p. 564. [Google Scholar]
- Korea Meteorological Administration Weather Data Service. Available online: https://data.kma.go.kr (accessed on 3 August 2021).
- Chungcheonbuk-do Institute of Health and Environment. Available online: https://here.chungbuk.go.kr (accessed on 3 August 2021).
- Dzierzanowski, K.; Popek, R.; Gawrońska, H.; Saebø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Bao, W.K.; Wu, N. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species. Sophora davidii. Agrofor. Syst. 2009, 77, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Dinesh, B.; Yadav, B.; Reddy, R.D.; Padma, A.S.; Sukumaran, M.K. Determination of ascorbic acid content in some Indian spices. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 864–868. [Google Scholar]
- Panda, L.R.L.; Aggarwal, R.K.; Bhardwaj, D.R. A review on air pollution tolerance index (APTI) and anticipated performance index (API). Curr. World Environ. 2018, 13, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Kwak, M.J.; Lee, J.K.; Park, S.; Lim, Y.J.; Kim, H.; Kim, K.N.; Je, S.M.; Park, C.R.; Woo, S.Y. Evaluation of the importance of some East Asian tree species for refinement of air quality by estimating air pollution tolerance index, anticipated performance index, and air pollutant uptake. Sustainability 2020, 12, 3067. [Google Scholar] [CrossRef] [Green Version]
- Pandit, J.; Sharma, A.K. A Review of effects of air pollution on physical and biochemical characteristics of plants. Int. J. Chem. Stud. 2020, 8, 1684–1688. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Tripathi, B.D. Anticipated performance index of some tree species considered for green belt development in and around an urban area: A case study of Varanasi city, India. J. Environ. Manag. 2008, 88, 1343–1349. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Niu, X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.; Van Slycken, J. The selection of plant materials for street trees, park trees and urban woodland. In Urban Forests and Trees; Konijnendijk, C., Nilsson, K., Randrup, T., Schipperijn, J., Eds.; Springer: Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Kim, H.; Lim, Y.J.; Lee, K.A.; Son, J.A.; Oh, C.Y.; Kim, I.; Woo, S.Y. Surface-based analysis of leaf microstructures for adsorbing and retaining capability of airborne particulate matter in ten woody species. Forests 2020, 11, 946. [Google Scholar] [CrossRef]
- Łukowski, A.; Popek, R.; Karolewski, P. Particulate matter on foliage of Betula pendula, Quercus robur, and Tilia cordata: Deposition and ecophysiology. Environ. Sci. Pollut. Res. 2020, 27, 10296–10307. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Lin, X.; Chen, J.; Huang, D.; Li, M. Atmospheric particle retention capacity and photosynthetic responses of three common greening plant species under different pollution levels in Hangzhou. Glob. Ecol. Conserv. 2019, 20, e00783. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Wang, B.; Wei, W. Response of the particulate matter capture ability to leaf age and pollution intensity. Environ. Sci. Pollut. Res. 2020, 27, 34258–34269. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Chatterjee, M.; Mukherjee, A. Air pollution tolerance index (APTI) used for assessing air quality to alleviate climate change: A review. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 45–54. [Google Scholar]
- Uka, U.N.; Belford, E.J.D.; Hogarh, J.N. Roadside air pollution in a tropical city: Physiological and biochemical response from trees. Bull. Natl. Res. Cent. 2019, 43. [Google Scholar] [CrossRef] [Green Version]
- Steubing, L.; Fangmeier, A.; Both, R.; Frankenfeld, M. Effects of SO2, NO2, and O3 on population development and morphological and physiological parameters of native herb layer species in a beech forest. Environ. Pollut. 1989, 58, 281–302. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Gawrońska, H.; Grab, K.; Łoskot, K.; Wrochna, M.; Gawroński, S.W. Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter. Acta Sci. Pol. Hortorum Cultus 2014, 13, 17–30. [Google Scholar]
- Molnár, V.É.; Tőzsér, D.; Szabó, S.; Tóthmérész, B.; Simon, E. Use of leaves as bioindicator to assess air pollution based on composite proxy measure (APTI), dust amount and elemental concentration of metals. Plants 2020, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Anake, W.U.; Eimanehi, J.E.; Omonhinmin, C.A. Evaluation of air pollution tolerance index and anticipated performance index of selected plant species. Indones. J. Chem. 2019, 19, 239–244. [Google Scholar] [CrossRef]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Pathak, V.; Tripathi, B.D.; Mishra, V.K. Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green. 2011, 10, 61–66. [Google Scholar] [CrossRef]
Species | Family Name | Habit | Type |
---|---|---|---|
Juniperus chinensis L. | Cupressaceae | Tree | Evergreen (needle-leaved) |
Pinus parviflora Siebold & Zucc. | Pinaceae | Tree | Evergreen (needle-leaved) |
Pinus densiflora Siebold & Zucc. | Pinaceae | Tree | Evergreen (needle-leaved) |
Abies holophylla Maxim. | Pinaceae | Tree | Evergreen (needle-leaved) |
Picea abies (L.) H.Karst. | Pinaceae | Tree | Evergreen (needle-leaved) |
Pinus strobus L. | Pinaceae | Tree | Evergreen (needle-leaved) |
Aesculus turbinata Blume | Hippocastanaceae | Tree | Deciduous (broad-leaved) |
Cercis chinensis Bunge | Fabaceae | Shrub | Deciduous (broad-leaved) |
Cornus officinalis Siebold & Zucc. | Cornaceae | Tree | Deciduous (broad-leaved) |
Acer triflorum Kom. | Aceraceae | Tree | Deciduous (broad-leaved) |
Ligustrum obtusifolium Siebold & Zucc. | Oleaceae | Shrub | Deciduous (broad-leaved) |
Grading Characters | Pattern of Assessment | Grade Allotted | |
---|---|---|---|
Tolerance | APTI | 7.0–8.0 | + |
8.1–10.0 | ++ | ||
10.1–11.0 | +++ | ||
11.1–12.0 | +++ | ||
12.1–13.0 | +++++ | ||
Morphological | Plant habit | Small | − |
Medium | + | ||
Large | ++ | ||
Canopy structure | Sparse/irregular/globular | − | |
Spreading crown/open/semidense | + | ||
Spreading dense | ++ | ||
Type of plant | Deciduous | − | |
Evergreen | + | ||
Laminar structure | Size | Small | − |
Medium | + | ||
Large | ++ | ||
Texture | Smooth | − | |
Coriaceous | + | ||
Hardness | Delineate | − | |
Hardy | + | ||
Socio- economic | Economic value | <3 uses | − |
3–4 uses | + | ||
5 or more uses | ++ |
Grade | Score (%) | Assessment of Plant Speceis |
---|---|---|
0 | Up to 30 | Not recommended for plantation |
1 | 31–40 | Very poor |
2 | 41–50 | Poor |
3 | 51–60 | Moderate |
4 | 61–70 | Good |
5 | 71–80 | Very good |
6 | 81–90 | Excellent |
7 | 91–100 | Best |
Ascorbic Acid (mg g−1) | Tchl (mg g−1) | pH | RWC (%) | APTI | |
---|---|---|---|---|---|
J. chinensis | 0.71 ± 0.07 e z | 0.10 ± 0.02 e | 5.11 ± 0.11 de | 73.48 ± 4.58 cd | 7.72 ± 0.47 e |
P. parviflora | 1.70 ± 0.42 bc | 0.15 ± 0.03 cde | 4.98 ± 0.14 e | 79.03 ± 2.46 b | 8.77 ± 0.27 bc |
P. densiflora | 1.91 ± 0.23 abc | 0.19 ± 0.03 a–d | 5.10 ± 0.08 e | 85.05 ± 3.54 a | 9.52 ± 0.31 a |
A. holophylla | 2.38 ± 0.40 a | 0.14 ± 0.01 cde | 5.39 ± 0.04 c | 75.30 ± 1.99 bcd | 8.85 ± 0.30 b |
P. abies | 1.43 ± 0.23 cd | 0.18 ± 0.02 bcde | 5.99 ± 0.17 a | 72.08 ± 1.71 de | 8.09 ± 0.05 de |
P. strobus | 2.09 ± 0.20 ab | 0.12 ± 0.01 de | 4.15 ± 0.39 g | 72.32 ± 1.02 de | 8.12 ± 0.13 de |
A. turbinata | 0.85 ± 0.06 e | 0.21 ± 0.04 abc | 5.35 ± 0.10 cd | 72.77 ± 1.13 de | 7.75 ± 0.14 e |
C. chinensis | 1.04 ± 0.13 de | 0.27 ± 0.02 a | 5.34 ± 0.08 cd | 65.25 ± 1.00 f | 7.11 ± 0.12 f |
C. officinalis | 1.14 ± 0.10 de | 0.19 ± 0.05 abcd | 5.69 ± 0.16 b | 72.79 ± 2.33 de | 7.95 ± 0.29 e |
A. triflorum | 1.43 ± 0.40 cd | 0.24 ± 0.15 ab | 4.45 ± 0.12 f | 77.05 ± 3.21 bc | 8.38 ± 0.40 cd |
L. obtusifolium | 1.47 ± 0.68 cd | 0.23 ± 0.02 abc | 5.07 ± 0.08 e | 69.22 ± 2.78 e | 7.70 ± 0.25 e |
Significance | *** | ** | *** | *** | *** |
EW | Ascorbic Acid | Tchl | pH | RWC | APTI | |
---|---|---|---|---|---|---|
sPM10 | 0.880 *** | 0.514 *** | −0.329 * | −0.538 *** | 0.288 | 0.369 * |
sPM2.5 | 0.844 *** | 0.511 *** | −0.306 * | −0.637 *** | 0.284 | 0.355 * |
wPM10 | 0.887 *** | 0.570 *** | −0.384 * | −0.548 *** | 0.180 | 0.307 * |
wPM2.5 | 0.681 *** | 0.423 ** | −0.272 | −0.469 ** | 0.063 | 0.164 |
APTI | Plant Habit | Canopy Structure | Type of Plant | Leaf Size | Texture | Hardness | Economic Value | Total Grades | % Score | API Value | Assessment | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
J. chinensis | + | ++ | + | + | − | + | + | + | 8 | 50.0 | 2 | Poor |
P. parviflora | ++ | ++ | ++ | + | − | + | + | − | 9 | 56.3 | 3 | Moderate |
P. densiflora | ++ | ++ | ++ | + | − | + | + | + | 10 | 62.5 | 4 | Good |
A. holophylla | ++ | ++ | ++ | + | − | + | + | − | 9 | 56.3 | 3 | Moderate |
P. abies | ++ | ++ | ++ | + | − | + | + | − | 9 | 56.3 | 3 | Moderate |
P. strobus | ++ | ++ | ++ | + | − | + | + | − | 9 | 56.3 | 3 | Moderate |
A. turbinata | + | ++ | + | − | ++ | + | + | + | 9 | 56.3 | 3 | Moderate |
C. chinensis | + | − | − | − | ++ | + | + | + | 6 | 37.5 | 1 | Very poor |
C. officinalis | + | − | − | − | + | − | + | − | 3 | 18.8 | 0 | Not recommended |
A. triflorum | ++ | + | + | − | + | + | + | − | 7 | 43.8 | 2 | Poor |
L. obtusifolium | + | − | − | − | + | − | − | − | 2 | 12.5 | 0 | Not recommended |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, H.-T.; Odsuren, U.; Kwon, K.-J.; Kim, S.-Y.; Yang, J.-C.; Jeong, N.-R.; Park, B.-J. Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species. Atmosphere 2021, 12, 1067. https://doi.org/10.3390/atmos12081067
Bui H-T, Odsuren U, Kwon K-J, Kim S-Y, Yang J-C, Jeong N-R, Park B-J. Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species. Atmosphere. 2021; 12(8):1067. https://doi.org/10.3390/atmos12081067
Chicago/Turabian StyleBui, Huong-Thi, Uuriintuya Odsuren, Kei-Jung Kwon, Sang-Yong Kim, Jong-Cheol Yang, Na-Ra Jeong, and Bong-Ju Park. 2021. "Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species" Atmosphere 12, no. 8: 1067. https://doi.org/10.3390/atmos12081067
APA StyleBui, H. -T., Odsuren, U., Kwon, K. -J., Kim, S. -Y., Yang, J. -C., Jeong, N. -R., & Park, B. -J. (2021). Assessment of Air Pollution Tolerance and Particulate Matter Accumulation of 11 Woody Plant Species. Atmosphere, 12(8), 1067. https://doi.org/10.3390/atmos12081067