Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Campaigns
- P0 was located in the area where the process of shredding OFMSW is self-managed and the pre-treated OFMSW enters the plant. The pre-treatment process included shredding or squeezing and was conducted at the pilot plant itself (3 and 4 May) or by an external company.
- P1 was the intermediate phase where the liquid phase coming from acidogenesis was separated by centrifuge for subsequent enrichment of PHA producers (22 November).
- P2 was located where the methanogenesis of the resulting biosolids process took place.
- Background definition (10 and 11 March 2016): the first campaign evaluated the background contamination levels of the pilot plant, sampling all points (P0, P1, P2).
- AD process including pre-treatment of the OFMSW (3 and 4 May 2016): the second campaign assessed the potential impact of the OFMSW shredding phase, which is self-managed and somewhat automated, analyzing points P0 and P1. During this phase, to limit worker exposure, no collective protective equipment was employed, only personal equipment.
- AD process without pre-treatment of OFMSW (22 November 2016): the third campaign evaluated the residual contamination when AD was conducted using OFMSW liquid partly squeezed and homogenized by an outsourcing plant [7]. In this phase, P1 and P2 were sampled.
2.2. PM10 Sampling and Analysis
2.3. Endotoxin Content Assessment
2.4. Bioaerosol Sampling and Culture-Dependent Analysis
- Background definition (10 and 11 March) at P0, P1, and P2.
- AD process, including pre-treatment of OFMSW (3 and 4 May) at P0 and P1.
- AD process without pre-treatment of OFMSW (22 November) at P1 and P2.
2.5. Data Elaboration and Statistics
3. Results
- Fungi (ANOVA p < 0.01): background concentration was lower than the other two sampling campaigns with OFMSW (207.8 CFU/m3 vs. >1307 and >1307 CFU/m3).
- Bacillus spp. (ANOVA p < 0.05): background concentration was lower than the campaign with manually shredded OFMSW (4.3 CFU/m3 vs. 369.8 CFU/m3).
- Clostridium spp. (ANOVA p < 0.05): background concentration was lower than the campaign with manually shredded OFMSW (<limit of quantification CFU/m3 vs. 7.3 CFU/m3).
4. Discussion
5. Limits
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, W.P. The uptake of anaerobic digestion for the organic fraction of municipal solid waste—Push versus pull factors. Bioresour. Technol. 2018, 249, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Fernández-González, J.M.; Díaz-López, C.; Martín-Pascual, J.; Zamorano, M. Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustainability 2020, 12, 4798. [Google Scholar] [CrossRef]
- Robertson, S.; Douglas, P.; Jarvis, D.; Marczylo, E. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int. J. Hyg. Environ. Health 2019, 222, 364–386. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. Off. J. Eur. Union 2018, 2018, 100–108. [Google Scholar]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef] [PubMed]
- Crognale, S.; Tonanzi, B.; Valentino, F.; Majone, M.; Rossetti, S. Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Sci. Total Environ. 2019, 689, 765–773. [Google Scholar] [CrossRef]
- Valentino, F.; Moretto, G.; Lorini, L.; Bolzonella, D.; Pavan, P.; Majone, M. Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind. Eng. Chem. Res. 2019, 58, 12149–12158. [Google Scholar] [CrossRef]
- Bátori, V.; Åkesson, D.; Zamani, A.; Taherzadeh, M.J.; Sárvári Horváth, I. Anaerobic degradation of bioplastics: A review. Waste Manag. 2018, 80, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Liang, D.; Li, N. Conductive materials in anaerobic digestion: From mechanism to application. Bioresour. Technol. 2020, 298, 122403. [Google Scholar] [CrossRef]
- Ahmed, B.; Tyagi, V.K.; Aboudi, K.; Naseem, A.; Álvarez-Gallego, C.J.; Fernández-Güelfo, L.A.; Kazmi, A.A.; Romero-García, L.I. Thermally enhanced solubilization and anaerobic digestion of organic fraction of municipal solid waste. Chemosphere 2021, 282, 131136. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; Paluszak, Z.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedzwiecki, L.; Pińkowska, H. Pathogen Reduction Potential in Anaerobic Digestion. Molecules 2020, 25, 275. [Google Scholar] [CrossRef] [Green Version]
- Wéry, N. Bioaerosols from composting facilities—A review. Front. Cell. Infect. Microbiol. 2014, 4, 42. [Google Scholar] [CrossRef]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Health Part B Crit. Rev. 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.; Tyrrel, S.F.; Kinnersley, R.P.; Whelan, M.; Longhurst, P.J.; Hansell, A.L.; Walsh, K.; Pollard, S.J.T.; Drew, G.H. Predicting Aspergillus fumigatus exposure from composting facilities using a dispersion model: A conditional calibration and validation. Int. J. Hyg. Environ. Health 2017, 220, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, O.; Robert, S.; Debeaupuis, C.; Huyard, A. Inhalable dust as a marker of exposure to airborne biological agents in composting facilities. Waste Manag. 2018, 81, 78–87. [Google Scholar] [CrossRef]
- Schlosser, O.; Huyard, A.; Cartnick, K.; Yañez, A.; Catalán, V.; Do Quang, Z. Bioaerosol in Composting Facilities: Occupational Health Risk Assessment. Water Environ. Res. 2009, 81, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency EPA. Particulate Matter (PM) Basics; US EPA: Washington, DC, USA, 2021. [Google Scholar]
- WHO. Air Quality Guidelines; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Directive 2008/50/EC Air Quality Directive. 2008. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 1 August 2021).
- Traversi, D.; Gilli, G. Mutagenicity of PM2.5. Encycl. Environ. Health 2018, 880–887. [Google Scholar] [CrossRef]
- Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.; Schiliro, T.; Gilli, G.; Schilirò, T.; Gilli, G. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas. Atmos. Environ. 2011, 45, 3515–3521. [Google Scholar] [CrossRef]
- Dacarro, C.; Grignani, E.; Lodola, L.; Grisoli, P.; Cottica, D. Proposed microbiological indexes for the assessment of air quality in buildings. G. Ital. Med. Lav. Ergon. 2000, 22, 229–235. [Google Scholar] [PubMed]
- Degois, J.; Simon, X.; Clerc, F.; Bontemps, C.; Leblond, P.; Duquenne, P. One-year follow-up of microbial diversity in bioaerosols emitted in a waste sorting plant in France. Waste Manag. 2021, 120, 257–268. [Google Scholar] [CrossRef] [PubMed]
- ACGIH. 2018 Guide to Occupational Exposure Values; Governmental American Conference of Industrial Hygienists: Cincinnati, OH, USA, 2018; ISBN 978-1-607260-98-1. [Google Scholar]
- Chang, M.W.; Lee, C.R.; Hung, H.F.; Teng, K.S.; Huang, H.; Chuang, C.Y. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes. Int. J. Environ. Res. Public Health 2014, 11, 337–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duquenne, P.; Simon, X.; Koehler, V.; Goncalves-Machado, S.; Greff, G.; Nicot, T.; Poirot, P. Documentation of bioaerosol concentrations in an indoor composting facility in France. J. Environ. Monit. 2012, 14, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.; Schneider, T.; Larsson, L. Microbial Dustiness and Particle Release of Different Biofuels. Ann. Occup. Hyg. 2004, 48, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Rolph, C.A.; Gwyther, C.L.; Tyrrel, S.F.; Nasir, Z.A.; Drew, G.H.; Jackson, S.K.; Khera, S.; Hayes, E.T.; Williams, B.; Bennett, A.; et al. Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review. Atmosphere 2018, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334. [Google Scholar] [CrossRef] [Green Version]
- Carballa, M.; Regueiro, L.; Lema, J.M. Microbial management of anaerobic digestion: Exploiting the microbiome-functionality nexus. Curr. Opin. Biotechnol. 2015, 33, 103–111. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Mace, S.; Llabres, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Nelson, M.C.; Morrison, M.; Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 2011, 102, 3730–3739. [Google Scholar] [CrossRef]
- Ministero del Lavoro. Allegato XLVI D.Lgs 81/2008 Elenco degli Agenti Biologici Classificati; Ministero del Lavoro: Rome, Italy, 2008. [Google Scholar]
- Maughan, H.; Van der Auwera, G. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect. Genet. Evol. 2011, 11, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Gutarowska, B.; Skóra, J.; Stępień, Ł.; Szponar, B.; Otlewska, A.; Pielech-Przybylska, K. Assessment of microbial contamination within working environments of different types of composting plants. J. Air Waste Manag. Assoc. 2015, 65, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Vieira, M.J. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res. 2009, 43, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilborn, E.D.; Arduino, M.J.; Pruden, A.; Edwards, M.A. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ. Health Perspect. 2015, 123, 749–758. [Google Scholar]
- Feng, W.; Sun, F.; Wang, Q.; Xiong, W.; Qiu, X.; Dai, X.; Xia, P. Epidemiology and resistance characteristics of Pseudomonas aeruginosa isolates from the respiratory department of a hospital in China. J. Glob. Antimicrob. Resist. 2017, 8, 142–147. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Sanghvi, G.; Yadav, M.; Padhiyar, H.; Thanki, A. A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. J. Hazard. Mater. 2021, 410, 124686. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Kim, D. Assessment of airborne microorganisms in a swine wastewater treatment plant. Environ. Eng. Res. 2012, 17, 211–216. [Google Scholar] [CrossRef]
- Duquenne, P. On the identification of culturable microorganisms for the assessment of biodiversity in bioaerosols. Ann. Work Expo. Health 2018, 62, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anedda, E.; Carletto, G.; Gilli, G.; Traversi, D. Monitoring of Air Microbial Contaminations in Different Bioenergy Facilities Using Cultural and Biomolecular Methods. Int. J. Environ. Res. Public Health 2019, 16, 2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Investigated Microorganisms | Culture Media | Incubation Temperature |
---|---|---|
Bacterial count at 22 °C | Plate Count Agar (Merck VM361263 202) | 22 °C |
Bacterial count at 37 °C | Plate Count Agar (Merck VM361263 202) | 37 °C |
Bacterial count at 55 °C | Plate Count Agar (Merck VM361263 202) | 55 °C |
Fungi/yeasts | Sabouraud Glucose Agar with 4% Chloramphenicol (Sigma 89579) | 24 °C |
Pseudomonadaceae | Cetrimide (Merck VM077084 930) | 37 °C |
Bacillus spp. | Hi-crome Bacillus Agar (Fluka 92325) | 30 °C |
Clostridium spp. | mCP (SIFIN TN1288) | 44 °C |
Gram-negative bacteria | MacConkey Agar (Biolife 4016702) | 37 °C |
Salmonella/Shigella | XLD-D (bioMérieux 51049) | 37 °C |
Actinomycetes | Starch Casein Agar (US Biological S7968-25) | 55 °C |
Campaign | Date | PM10 (µg/m3) | Endotoxin (EU/m3) | Wind Speed (Km/h) | Temperature (°C) |
---|---|---|---|---|---|
First | 10 March | 37.53 | 24.11 | 8 | 10 |
11 March | 9.38 | 85.62 | 7 | 10.5 | |
Second | 3 May | 11.89 | 58.05 | 9 | 23 |
4 May | 5.97 | 37.19 | 13.5 | 17.5 | |
Third | 22 November | 29.97 | 36.61 | 7.6 | 12.5 |
Indicators CFU/m3 | First Campaign (P0, c1, P2) | Second Campaign (P0, P1) | Third Campaign (P1, P2) | Analysis of Variance | |||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | p-Value | |
Bacterial count at 22 °C | 187.78 | 97.54 | 68.33 | 60.12 | 78.00 | 0 | n.s. |
Bacterial count at 37 °C | 89.33 | 17.24 | 71.00 | 45.08 | 43.00 | 4.24 | n.s. |
Bacterial count at 55 °C | 24.00 | 27.78 | 0 | 0 | 5.00 | 1.41 | n.s. |
Fungi/yeasts | 207.78 | 73.96 | 1,307 | 0 | 1,307 | 0 | <0.01 |
Pseudomonadaceae | 0.33 | 0.58 | 13.00 | 24.09 | 1.50 | 2.12 | n.s. |
Bacillus spp. | 4.33 | 1.53 | 369.75 | 729.01 | 73.33 | 33.00 | <0.05 |
Clostridium spp. | 0.33 | 0.58 | 7.25 | 5.03 | 3.00 | 2.83 | <0.05 |
Gram-negative bacteria | 0.33 | 0.58 | 12.75 | 12.06 | 9.50 | 12.02 | n.s. |
Salmonella/Shigella | 0 | 0 | 30.25 | 29.02 | 3.50 | 3.54 | n.s. |
Actinomycetes | 3.67 | 3.06 | 0.50 | 0.58 | 4.50 | 3.54 | n.s |
Campaign | Isolated Microorganism | % | Relevance to Human Health [32] | Main Transmission Route/Vehicle | Environmental Dispersion | General Description |
---|---|---|---|---|---|---|
First | Pseudomonas aeruginosa | 99.5 | Opportunistic pathogen (class 2) | Aerosol | Ubiquitous | Gram-negative, Pseudomonadaceae |
Serratia rubidaea | 81.2 | Opportunistic pathogen | Parenteral | Water, soil | Gram-negative, Enterobacteriaceae | |
Photobacterium damselae | 95.0 | Pathogen | Oral–fecal | Water, food | Gram-negative, Vibrionaceae | |
Pseudomonas fluorescens | 75.2 | Opportunistic pathogen | Oral–fecal, parenteral | Soil, surface water | Gram-negative, Pseudomonadaceae | |
Second | Hafnia alvei | 99 | Opportunistic pathogen | Oral–fecal | Soil, food | Gram-negative, Enterobacteria |
Serratia marcescens | 98 | Opportunistic pathogen | Direct contact | Ubiquitous | Gram-negative, Enterobacteria | |
Proteus vulgaris | 99.9 | Pathogen (class 2) | Contact | Soil, fertilizers, sewage | Gram-negative, Enterobacteria | |
Serratia liquefaciens | 90.3 | Opportunistic pathogen | Direct contact, oral–fecal | Soil, waste, wastewater | Gram-negative, Enterobacteria | |
Serratia odorifera | 99.9 | Opportunistic pathogen | Direct contact, oral–fecal | Ubiquitous | Gram-negative, Enterobacteria | |
Pseudomonas luteola | 82.6 | Opportunistic pathogen | Aerosol | Ubiquitous | Pseudomonadaceae | |
Klebsiella pneumoniae | 98 | Opportunistic pathogen (class 2) | Aerosol | Wet environment, water facilities | Enterobacteriaceae | |
Klebsiella oxytoca | 99.6 | Opportunistic pathogen (class 2) | Direct contact | Ubiquitous | Enterobacteriaceae | |
Bacillus cereus | 99.9 | Pathogen | Oral–fecal | Soil, dust, food | Gram-positive, Bacillaceae | |
Pantoea spp. | 99.8 | Opportunistic pathogens | Parenteral | Water, soil | Enterobacteriaceae | |
Bacillus licheniformis | 99.9 | Opportunistic pathogen | Aerosol | Soil | Gram-positive, Bacillaceae | |
Citrobacter freundii | 76 | Opportunistic pathogen | Oral–fecal | Water, soil | Enterobacteriaceae | |
Third | Pantoea 1 spp. | 98.8 | Opportunistic pathogens | Parenteral | Water, soil | Gram-negative, Enterobacteriaceae |
Enterobacter cloacae (2) | 99.0;98.7 | Opportunistic pathogens | Contact/aerosol | Water, ubiquitous | ||
Pseudomonas aeruginosa | 99.0 | Opportunistic pathogen (class 2) | Aerosol | Ubiquitous | Pseudomonadaceae | |
Pseudomonas luteola (2) | 98.6;89.0 | Opportunistic pathogen | Aerosol | Ubiquitous | Pseudomonadaceae | |
Pseudomonas putida (2) | 98.8;91.0 | Opportunistic pathogen | Aerosol | Nosocomial | Pseudomonadaceae | |
Cintrobacter freundii | 97.8 | Opportunistic pathogen | Oral-fecal | Water, soil | Enterobacteriaceae | |
Enterobacter aerogens | 99.0 | Opportunistic pathogen | Contact/aerosol | Water, ubiquitous | ||
Klebsiella pneumoniae | 97.9 | Opportunistic pathogen (class 2) | Aerosol | Wet environments, water | Enterobacteriaceae | |
Proteus vulgaris | 99.0 | Pathogen (class 2) | Direct/indirect contact | Soil, fertilizers, sewage | Enterobacteriaceae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascale, E.; Franchitti, E.; Caredda, C.; Fornasero, S.; Carletto, G.; Pietrangeli, B.; Valentino, F.; Pavan, P.; Gilli, G.; Anedda, E.; et al. Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study. Atmosphere 2021, 12, 1069. https://doi.org/10.3390/atmos12081069
Pascale E, Franchitti E, Caredda C, Fornasero S, Carletto G, Pietrangeli B, Valentino F, Pavan P, Gilli G, Anedda E, et al. Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study. Atmosphere. 2021; 12(8):1069. https://doi.org/10.3390/atmos12081069
Chicago/Turabian StylePascale, Erica, Elena Franchitti, Chiara Caredda, Stefania Fornasero, Giulia Carletto, Biancamaria Pietrangeli, Francesco Valentino, Paolo Pavan, Giorgio Gilli, Elisa Anedda, and et al. 2021. "Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study" Atmosphere 12, no. 8: 1069. https://doi.org/10.3390/atmos12081069
APA StylePascale, E., Franchitti, E., Caredda, C., Fornasero, S., Carletto, G., Pietrangeli, B., Valentino, F., Pavan, P., Gilli, G., Anedda, E., & Traversi, D. (2021). Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study. Atmosphere, 12(8), 1069. https://doi.org/10.3390/atmos12081069