Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data Description
2.3. Method
- -
- A condition of calm air, i.e., wind speed (v10m) 0.5 m/s at 10 m above the ground;
- -
- A mean radiant temperature (Tmrt) equal to air temperature;
- -
- Relative humidity (f) of 50% (capped at 20 hPa for air temperatures over 29 °C).
3. Results
3.1. Spring OTC in Belgrade, Novi Sad and Niš
3.2. Summer OTC in Belgrade, Novi Sad and Niš
3.3. Autumn OTC in Belgrade, Novi Sad and Niš
3.4. Winter OTC in Belgrade, Novi Sad and Niš
3.5. Average Seasonal and Annual UTCIs in Belgrade, Novi Sad and Niš
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pantavou, K.; Theoharatos, G.; Santamouris, M.; Asimakopoulos, D. Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Build. Environ. 2013, 66, 82–95. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Aghamolaei, R.; Shamsi, M.H.; Tahsildoost, M.; O’Donnell, J. Review of district-scale energy performance analysis: Outlooks towards holistic urban frameworks. Sustain. Cities Soc. 2018, 41, 252–264. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; Mirzaei, P.A. A tempo-spatial modelling framework to assess outdoor thermal comfort of complex urban neighbourhoods. Urban Clim. 2020, 33, 100665. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- ASHRAE Standard 55 Thermal Environmental Conditions for Human Occpancy. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 14 March 2021).
- Nicol, J.F.; Roaf, S. Rethinking thermal comfort. Build. Res. Inf. 2017, 45, 711–716. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P.; Žuvela-Aloise, M. Spatial modelling of summer climate indices based on local climate zones: Expected changes in the future climate of Brno, Czech Republic. Clim. Chang. 2019, 152, 487–502. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Jurek, M. Spatiotemporal variability of air temperature during a heat wave in real and modified landcover conditions: Prague and Brno (Czech Republic). Urban Clim. 2020, 31, 100588. [Google Scholar] [CrossRef]
- Gunawardena, K.; Wells, M.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Giannopoulou, K.; Livada, I.; Santamouris, M.; Saliari, M.; Assimakopoulos, M.; Caouris, Y. The influence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustain. Cities Soc. 2014, 10, 184–194. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Milošević, D.D.; Bajšanski, I.V.; Savić, S.M. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D. Interactions between urbanization, heat stress, and climate change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T. Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy Build. 2017, 156, 96–108. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milosevic, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Nat. Hazards 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kuchcik, M.; Błażejczyk, A.; Milewski, P.; Szmyd, J. Assessment of urban thermal stress by UTCI—Experi-mental and modelling studies: An example from Poland. Die Erde 2014, 145, 16–33. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Matzarakis, A. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere 2020, 11, 1276. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M.R. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study. Adv. Meteorol. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Anna, B.; Milica, P.; Oleh, S.; Błażejczyk, K.; Olesya, S. Weather suitability for outdoor tourism in three European regions in first decades of the twenty-first century. Int. J. Biometeorol. 2021, 65, 1339–1356. [Google Scholar] [CrossRef] [PubMed]
- Pecelj, M.M.; Lukić, M.Z.; Filipović, D.J.; Protić, B.; Bogdanović, U.M. Analysis of the Universal Thermal Climate Index during heat waves in Serbia. Nat. Hazards Earth Syst. Sci. 2020, 20, 2021–2036. [Google Scholar] [CrossRef]
- Savic, S.; Geletic, J.; Milosevic, D.; Lehnert, M. Analysis of land surface temperatures in the “Local Climate Zones” of Novi Sad (Serbia). Glas. Srp. Geogr. Drustva 2020, 100, 41–50. [Google Scholar] [CrossRef]
- Mölders, N. Outdoor Universal Thermal Comfort Index Climatology for Alaska. Atmos. Clim. Sci. 2019, 09, 558–582. [Google Scholar] [CrossRef] [Green Version]
- Rupp, R.; Vasquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Đurić, D.; Marković, J.T. Termal comfort in the city of Bijeljina, for the period 2009–2018 defined by wgbt. Arch. Tech. Sci. 2020, 1, 69–74. [Google Scholar] [CrossRef]
- Hamdi, Y.; Haigh, I.D.; Parey, S.; Wahl, T. Preface: Advances in extreme value analysis and application to natural hazards. Nat. Hazards Earth Syst. Sci. 2021, 21, 1461–1465. [Google Scholar] [CrossRef]
- Kolendowicz, L.; Półrolniczak, M.; Szyga-Pluta, K.; Bednorz, E. Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theor. Appl. Clim. 2018, 134, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.; Cloke, H.L. Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2015, 59, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Vučković, D.; Jovic, S.; Bozovic, R.; Dżamić, V.; Kićović, D. Potential of neuro-fuzzy methodology for forecasting of outdoor thermal comfort index at urban open spaces. Urban Clim. 2019, 28, 100467. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Lau, K.K.-L. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: A comparative study between Melbourne and Hong Kong. Int. J. Biometeorol. 2018, 62, 1311–1324. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc. Urban Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.; Rossi, F.A.; Fiala, D. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil. Int. J. Biometeorol. 2011, 56, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Krüger, E.; Fiala, D. UTCI: Validation and practical application to the assessment of urban outdoor thermal comfort. Geogr. Pol. 2013, 86, 11–20. [Google Scholar] [CrossRef]
- Dash, S.K.; Dey, S.; Salunke, P.; Dalal, M.; Saraswat, V.; Chowdhury, S.; Chowdhury, R.K.; Lohani, A.; Krishan, G.; Chandniha, S. Comparative Study of Heat Indices in India Based on Observed and Model Simulated Data. Curr. World Environ. 2017, 12, 530–546. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Shen, Z. Regional and seasonal variations of outdoor thermal comfort in China from 1966 to 2016. Sci. Total Environ. 2019, 665, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, D.; Hou, Y.; Du, J.; Liu, Z.; Zhang, G.; Shi, L. Outdoor Thermal Comfort of Urban Park—A Case Study. Sustainability 2020, 12, 1961. [Google Scholar] [CrossRef] [Green Version]
- Roshan, G.; Yousefi, R.; Blazejczyk, K. Assessment of the climatic potential for tourism in Iran through biometeorology clustering. Int. J. Biometeorol. 2017, 62, 525–542. [Google Scholar] [CrossRef]
- Farajzadeh, H.; Saligheh, M.; Alijani, B.; Matzarakis, A. Comparison of selected thermal indices in the northwest of Iran. Nat. Environ. Chang. 2015, 1, 61–80. [Google Scholar]
- Bleta, A.; Nastos, P.T.; Matzarakis, A. Assessment of bioclimatic conditions on Crete Island, Greece. Reg. Environ. Chang. 2013, 14, 1967–1981. [Google Scholar] [CrossRef]
- Urban, A.; Kyselý, J. Comparison of UTCI with Other Thermal Indices in the Assessment of Heat and Cold Effects on Cardiovascular Mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2014, 11, 952–967. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. J. Appl. Meteorol. Clim. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Dunjić, J. Outdoor thermal comfort research in urban areas of Central and Southeast Europe: A review. Geogr. Pannonica 2019, 23, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Basarin, B.; Lukić, T.; Matzarakis, A. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. Int. J. Biometeorol. 2015, 60, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Lukic, M.; Pecelj, M.; Protić, B.; Filipovic, D. An evaluation of summer discomfort in Nis (Serbia) using Humidex. J. Geogr. Inst. Jovan Cvijić SASA 2019, 69, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Lukić, M. An analysis of the influence of air temperature and humidity on outdoor thermal comfort in belgrade (serbia) using a simple heat index. Arch. Tech. Sci. 2020, 1, 75–84. [Google Scholar] [CrossRef]
- Pecelj, M.; Lukic, M.; Vucicevic, A.; De Uña-Álvarez, E.; da Silva, J.C.E.; Freinkina, I.; Ciganovic, S.; Bogdanovic, U. Geoecological evaluation of local surroundings for the purposes of recreational tourism. J. Geogr. Inst. Jovan Cvijic SASA 2018, 68, 215–231. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Mesaroš, M.; Pavić, D.; Đorđević, J.; Matzarakis, A. Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Northern Serbia. Int. J. Clim. 2018, 38, 142–157. [Google Scholar] [CrossRef]
- Bajšanski, I. The Algorithm for Improving the Thermal Comfort in Urban Environment. Ph.D. Thesis, Faculty of Technical Sci-ences, University of Novi Sad, Novi Sad, Serbia, May 2016. [Google Scholar]
- Pecelj, M.; Błażejczyk, A.; Vagić, N.; Ivanović, P. The assessment of human bioclimate of Vranje health resort (Serbia) based on Universal Thermal Climate Index (UTCI) with the focus on extreme biothermal conditions. Geogr. Pol. 2021, 94, 201–222. [Google Scholar] [CrossRef]
- Pecelj, M.; Matzarakis, A.; Vujadinović, M.; Radovanović, M.; Vagić, N.; Đurić, D.; Cvetkovic, M. Temporal Analysis of Urban-Suburban PET, mPET and UTCI Indices in Belgrade (Serbia). Atmosphere 2021, 12, 916. [Google Scholar] [CrossRef]
- Pecelj, M.; Đorđević, A.; Pecelj, M.; Pecelj-Purkovic, J.; Filipovic, D.; Secerov, V. Biothermal conditions on Mt. Zlatibor based on thermophysiological indices. Arch. Biol. Sci. 2017, 69, 455–461. [Google Scholar] [CrossRef]
- Lukić, M.; Milovanović, J. UTCI Based Assessment of Urban Outdoor Thermal Comfort in Belgrade, Serbia. In Proceedings of the International Scientific Conference—Sinteza 2020, Singidunum University, Belgrade, Serbia, 17 October 2020; pp. 70–77. [Google Scholar]
- Bajšanski, I.V.; Milošević, D.D.; Savić, S.M. Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Build. Environ. 2015, 94, 632–643. [Google Scholar] [CrossRef]
- Milošević, D. Application and Evaluation of Classification System of Local Climate Zones Using Automatic Model and Biocli-mate Analysis. Ph.D. Thesis, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia, April 2018. [Google Scholar]
- Milovanovic, B.; Ducic, V.; Radovanovic, M.; Milivojevic, M. Climate regionalization of Serbia according to Köppen climate classification. J. Geogr. Inst. Jovan Cvijic SASA 2017, 67, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Vukovic, A.; Vujadinovic, M.; Rendulic, S.; Djurdjevic, V.; Ruml, M.; Babic, V.; Popovic, D. Global warming impact on climate change in Serbia for the period 1961-2100. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Filipović, D.; Lukić, A.; Lukić, M. Geospatial evaluation of belgrade for the purposes of determination of suitable locations for the construction of pv plants. Arch. Tech. Sci. 2020, 1, 59–66. [Google Scholar] [CrossRef]
- DevInfo Serbia. Available online: http://devinfo.stat.gov.rs/SerbiaProfileLauncher/files/profiles/sr/1/DI_Profil_Vracar_EURSRB001001001003.pdf (accessed on 29 May 2021).
- Milovanovic, B.; Radovanovic, M.; Schneider, C. Seasonal distribution of urban heat island intensity in Belgrade (Serbia). J. Geogr. Inst. Jovan Cvijic SASA 2020, 70, 163–170. [Google Scholar] [CrossRef]
- Tošić, I.; Mladjan, D.; Gavrilov, M.B.; Živanović, S.; Radaković, M.G.; Putnikovic, S.; Petrović, P.; Mistridželović, I.K.; Marković, S.B. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000–2017. Open Geosci. 2019, 11, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Prokic, M. Climate trends of temperature and precipitation in Nisava river valley (Serbia) for 1960-2015 period. J. Geogr. Inst. Jovan Cvijic SASA 2018, 68, 35–50. [Google Scholar] [CrossRef]
- Republic Hydrometeorological Service of Serbia. Available online: http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php (accessed on 17 May 2021).
- Blazejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2011, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2011, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Zare, S.; Hasheminejad, N.; ElahiShirvan, H.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broede, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2011, 56, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bröde, P.; Blazejczyk, K.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kuklane, K.; Kampmann, B. The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment. Ind. Health 2013, 51, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenith, G.; Fiala, D.; Blazejczyk, K.; Richards, M.; Bröde, P.; Holmér, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-clothing model. Int. J. Biometeorol. 2011, 56, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K.; Kuchcik, M. UTCI applications in practice (methodological questions). Geogr. Pol. 2021, 94, 153–165. [Google Scholar] [CrossRef]
- Institute of Geography and Spatial Organization Polish Academy of Science. Available online: https://www.igipz.pan.pl/Bioklima-zgik.html (accessed on 11 May 2021).
- Unkašević, M.; Tošić, I. Trends in temperature indices over Serbia: Relationships to large-scale circulation patterns. Int. J. Clim. 2013, 33, 3152–3161. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim. Chang. 2011, 108, 207–223. [Google Scholar] [CrossRef]
- Unkašević, M.; Tosic, I. Seasonal analysis of cold and heat waves in Serbia during the period 1949–2012. Theor. Appl. Clim. 2014, 120, 29–40. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Heat waves in Belgrade and Niš. Geogr. Pannonica 2009, 1, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Bogdanovic, D.; Milošević, Z.G.; Lazarevic, K.; Dolićanin, Z.Ć.; Ranđelović, D.M.; Bogdanović, S.D. The Impact of the July 2007 Heat Wave on Daily Mortality in Belgrade, Serbia. Cent. Eur. J. Public Health 2013, 21, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Stanojevic, G.; Stojilkovic, J.; Spalevic, A.; Kokotović, V. The impact of heat waves on daily mortality in Belgrade (Serbia) during summer. Environ. Hazards 2014, 13, 329–342. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. An analysis of heat waves in Serbia. Glob. Planet. Chang. 2009, 65, 17–26. [Google Scholar] [CrossRef]
- Unkašević, M.; Vujović, D.; Tosic, I. Trends in extreme summer temperatures at Belgrade. Theor. Appl. Clim. 2005, 82, 199–205. [Google Scholar] [CrossRef]
- Bajat, B.; Blagojevic, D.; Kilibarda, M.; Luković, J.; Tošić, I. Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theor. Appl. Clim. 2015, 121, 289–301. [Google Scholar] [CrossRef]
- Tošić, I.; Unkašević, M. Analysis of wet and dry periods in Serbia. Int. J. Clim. 2014, 34, 1357–1368. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Spatiotemporal characteristics of drought in Serbia. J. Hydrol. 2014, 510, 110–123. [Google Scholar] [CrossRef]
- Lazic, L.; Savic, S.; Tomic, Z.; Lazar, L.; Stevan, S.; Željka, T. Analysis of the temperature characteristics and trends in Novi Sad area, Vojvodina, Serbia. Geogr. Pannonica 2006, 10, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, S.V. Temperature and precipitation trends in Belgrade and indicators of changing extremes for Serbia. Geogr. Pannonica 2008, 12, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Drljača, V.; Tošić, I.; Unkašević, M. An analysis of heat waves in Belgrade and Niš using the climate index. J. Geogr. Inst. Jovan Cvijić SASA 2009, 59, 49–62. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Gál, T.; Mahó, S.I.; Skarbit, N.; Unger, J. Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- Anđelković, G. The basic characteristics of the Belgrade’s Urban Heat Island. Bull. Serb. Geogr. Soc. 2003, LXXXIII, 15–30. [Google Scholar]
UTCI (°C) | Stress Category | Physiological Responses | Abbr. |
---|---|---|---|
UTCI > 46 | Extreme heat stress | Increase in rectal temperature time gradient. Steep decrease in total net heat loss. Averaged sweat rate > 650 gh−1, steep increase. | EHS |
38 < UTCI < 46 | Very strong heat stress | Low core–skin temperature gradient. Increase in rectal temperature at 30 min. | VSHS |
32 < UTCI < 38 | Strong heat stress | Averaged sweat rate > 200 gh−1. Increase in rectal temperature at 120 min. Instantaneous change in skin temperature. | SHS |
26 < UTCI < 32 | Moderate heat stress | Change of slopes in sweat rate and rectal and skin (mean, face, hand) temperature. Occurrence of sweating at 30 min. Steep increase in skin wettedness. | MHS |
9 < UTCI < 26 | No thermal stress | Averaged sweat rate > 100 gh−1. Plateau in rectal temperature time gradient. | NTS |
0 < UTCI < 9 | Slight cold stress | Local minimum of hand skin temperature. | SLCS |
−13 < UTCI < 0 | Moderate cold stress | Vasoconstriction. Face skin temperature at 30 min < 15 °C (pain). | MCS |
−27 < UTCI < −13 | Strong cold stress | Numbness. Increase in core–skin temperature gradient. | SCS |
−40 < UTCI < −27 | Very strong cold stress | Frostbite, numbness, shivering. Steeper decrease in rectal temperature. | VSCS |
UTCI < −40 | Extreme cold stress | Frostbite. Decrease in rectal temperature time gradient. | ECS |
Abbreviations | UTCIs | Definition |
---|---|---|
UTCI07h | Universal Thermal Climate Index at 07 h | UTCI07h = f (t07h, f07h, v10m07h, Tmrt) |
UTCI14h | Universal Thermal Climate Index at 14 h | UTCI14h = f (t14h, f14h, v10m14h, Tmrt) |
UTCI21h | Universal Thermal Climate Index at 21 h | UTCI21h = f (t14h, f14h, v10m14h, Tmrt) |
Spring UTCIs | Belgrade | Novi Sad | Niš | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | |
UTCI07h | 21.07 | 20.59 | 21.56 | 19.98 | 19.60 | 20.35 | 22.38 | 21.71 | 23.04 |
UTCI14h | 25.51 | 25.01 | 26.01 | 24.10 | 23.70 | 24.50 | 26.49 | 25.74 | 27.23 |
UTCI21h | 23.24 | 23.22 | 23.27 | 21.51 | 21.01 | 22.01 | 24.17 | 23.57 | 24.77 |
Summer UTCIs | Belgrade | Novi Sad | Niš | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | |
UTCI07h | 27.40 | 26.88 | 27.93 | 26.80 | 26.39 | 27.20 | 27.81 | 27.45 | 28.16 |
UTCI14h | 32.75 | 32.13 | 33.37 | 32.02 | 31.54 | 32.50 | 33.76 | 33.49 | 34.03 |
UTCI21h | 29.15 | 28.66 | 29.63 | 28.15 | 27.71 | 28.59 | 29.83 | 29.31 | 30.35 |
Autumn UTCIs | Belgrade | Novi Sad | Niš | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | |
UTCI07h | 11.74 | 11.50 | 11.97 | 10.18 | 10.12 | 10.25 | 14.41 | 13.98 | 14.85 |
UTCI14h | 16.01 | 15.71 | 16.30 | 14.67 | 14.56 | 14.78 | 18.83 | 18.20 | 19.46 |
UTCI21h | 13.03 | 12.87 | 13.18 | 11.95 | 11.85 | 12.06 | 16.06 | 15.75 | 16.36 |
Winter UTCIs | Belgrade | Novi Sad | Niš | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | Average Value | 1st Decade | 2nd Decade | |
UTCI07h | 4.72 | 4.89 | 4.56 | 2.41 | 2.21 | 2.61 | 7.77 | 6.93 | 8.62 |
UTCI14h | 7.97 | 8.09 | 7.85 | 5.89 | 5.82 | 5.96 | 10.78 | 10.16 | 11.40 |
UTCI21h | 6.43 | 6.62 | 6.25 | 4.42 | 4.38 | 4.46 | 9.66 | 9.06 | 10.25 |
Ann. UTCIs | Belgrade | Novi Sad | Niš | ||||||
---|---|---|---|---|---|---|---|---|---|
Avg. Ann. Value | Avg. 1st Dec. | Avg. 2nd Dec. | Avg. Ann. Value | Avg. 1st Dec. | Avg. 2nd Dec. | Avg. Ann. Value | Avg. 1st Dec. | Avg. 2nd Dec. | |
Ann. UTCI07h | 16.43 | 16.16 | 16.70 | 15.04 | 14.79 | 15.30 | 18.17 | 17.50 | 18.83 |
Ann. UTCI14h | 20.77 | 20.44 | 21.10 | 19.38 | 19.12 | 19.64 | 22.73 | 22.09 | 23.36 |
Ann. UTCI21h | 18.04 | 17.79 | 18.29 | 16.70 | 16.44 | 16.97 | 20.13 | 19.59 | 20.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukić, M.; Filipović, D.; Pecelj, M.; Crnogorac, L.; Lukić, B.; Divjak, L.; Lukić, A.; Vučićević, A. Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. Atmosphere 2021, 12, 1084. https://doi.org/10.3390/atmos12081084
Lukić M, Filipović D, Pecelj M, Crnogorac L, Lukić B, Divjak L, Lukić A, Vučićević A. Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. Atmosphere. 2021; 12(8):1084. https://doi.org/10.3390/atmos12081084
Chicago/Turabian StyleLukić, Milica, Dejan Filipović, Milica Pecelj, Ljiljana Crnogorac, Bogdan Lukić, Lazar Divjak, Ana Lukić, and Ana Vučićević. 2021. "Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons" Atmosphere 12, no. 8: 1084. https://doi.org/10.3390/atmos12081084
APA StyleLukić, M., Filipović, D., Pecelj, M., Crnogorac, L., Lukić, B., Divjak, L., Lukić, A., & Vučićević, A. (2021). Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. Atmosphere, 12(8), 1084. https://doi.org/10.3390/atmos12081084