Warm Island Effect in the Lake Region of the Tengger Desert Based on MODIS and Meteorological Station Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. LST Data
2.2.2. Meteorological Data
2.2.3. ASTER GDEM Data
2.3. Methods
3. Results
3.1. Surface Temperature Differences
3.2. Air Temperature Differences
4. Discussion
4.1. Temperature Effects of the Lake-Group Region
4.2. Reasons for the Warm Island Effect
4.3. Universality and Particularity of the Warm Island Effect
4.4. Difference between the Warm Island Effects of the Two Deserts
4.5. Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, W.; Zhi, X.F.; Yang, L.M.; Ali, M.; Zhou, C.L.; Yang, F.; Yang, X.H.; Meng, L.; He, Q. Research progress on several problems of desert meteorology. Trans. Atmos. Sci. 2019, 42, 469–480. [Google Scholar]
- Labraga, J.C.; Villalba, R. Climate in the monte desert: Past trends, present conditions, and future projections. J. Arid Environ. 2009, 73, 154–163. [Google Scholar] [CrossRef]
- Ma, L.; Wang, N.A.; Huang, Y.Z.; Li, H.Y.; Lu, J.W. Characteristics of Radiation Budget and Energy Partitioning on Land and Lake Surface under Different Summer Weather Conditions in the Hinterland of Badain Jaran Desert. J. Nat. Res. 2015, 30, 796–809. [Google Scholar]
- Saaroni, H.; Ben-Dor, E.; Bitan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.; Liu, C. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar]
- Su, C.X.; Hu, Y.Q.; Zhang, Y.F.; Wei, G.A. The microclimate character and “cold island effect” over the oasis in Hexi region. Chin. J. Atmos. Sci. 1987, 11, 390–396. [Google Scholar]
- Su, C.X.; Hu, Y.Q. Cold island effect over oasis and lake. Chin. Sci. Bull. 1987, 33, 1023–1026. [Google Scholar]
- Hu, Y.Q.; Su, C.X.; Zhang, Y.F. Research on the microclimate characteristics and cold island effect over a reservoir in the Hexi Region. Adv. Atmos. Sci. 1988, 5, 117–126. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, N.A.; Li, Z.L.; Wu, Y.; Liang, X.Y. Spatial distribution of winter warm islands in Badain Jaran Desert based on MODIS data. J. Lanzhou Univ. (Nat. Sci.) 2015, 51, 180–185. [Google Scholar]
- Deng, X.B. Spatiotemporal Changes of Warm Island in Badain Jaran Desert and Its Influencing Factors; Lan Zhou University: Lanzhou, China, 2018; pp. 21–35. [Google Scholar]
- Liang, X.Y. Research on Warm Island Effect in Badain Jaran Desert Based on Observation Data; Lan Zhou University: Lanzhou, China, 2016; pp. 13–21. [Google Scholar]
- Liang, X.Y.; Zhao, L.Q.; Niu, Z.M.; Meng, N.; Wang, N.A. Warm Island Effect in the Badain Jaran Desert Lake Group Region Inferred from the Accumulated Temperature. Atmosphere 2020, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.Y.; Zhao, L.Q.; Xu, X.B.; Niu, Z.M.; Wang, N.A. Plant phenological responses to the warm island effect in the lake group region of the Badain Jaran Desert, northwestern China. Ecol. Inform. 2020, 57, 101066. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Yu, X.R.; Zhang, W.J.; Liang, X.Y.; Wang, N.A.; Cai, W.J. Warm island effect observed in lake areas of the Badain Jaran Desert, China. Weather 2021, in press. [Google Scholar]
- Zhang, H.C.; Ma, Y.Z.; Li, J.J.; Cao, J.X. Ancient lake and environment in Tengger Desert, 42–18 ka ago. Chin. Sci. Bull. 2002, 47, 1847–1857. [Google Scholar]
- Dong, C.Y. Observation Experiment of the Water Cycle and Lake Water Balance in Alxa Desert; Lan Zhou University: Lanzhou, China, 2011; pp. 46–52. [Google Scholar]
- Lai, T.T.; Wang, N.N.; Huang, Y.Z.; Zhang, J.M.; Zhao, L.Q. Seasonal changes of lakes in Tengger Desert of 2002. J. Lake Sci. 2012, 24, 957–964. [Google Scholar]
- Dong, Z.B.; Zhang, Z.C.; Zhao, G.A. Characteristics of wind velocity, Temperature and Humidity Profiles of Near-surface Layer in Tengger Desert. J. Desert. Res. 2009, 29, 977–981. [Google Scholar]
- Zhang, Z.C.; Dong, Z.B.; Wen, Q.; Jiang, C.W. Wind regimes and aeolian geomorphology in the western and southwestern Tengger Desert, NW China. Geol. J. 2015, 50, 707–719. [Google Scholar] [CrossRef]
- Zhao, J.B.; Yu, K.K.; Shao, T.J. A Preliminary Study on the Water Status in Sand Layers and Its Sources in the Tengger Desert. Resour. Sci. 2011, 33, 259–264. [Google Scholar]
- Wu, Z. Desert and Its Control in China; Science Press: Beijing, China, 2009; pp. 562–568. [Google Scholar]
- Wan, Z. New refinements and validation of the collection-6 modis land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wang, W.C.; Yang, X.X.; Yao, T.D. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [Google Scholar] [CrossRef]
- Wang, N.A.; Li, Z.L.; Cheng, H.Y.; Li, Y.; Huang, Y.Z. Re-discussion on the Late Quaternary High Lake Surface and Great Lake Period of the Alxa Plateau. Chinese. Sci. Bull. 2011, 56, 1367–1377. [Google Scholar]
- Yan, C.Z.; Li, S.; Lu, J.F. Lake number and area in the Tengger Desert during 1975–2015. J. Desert Res. 2020, 40, 183–189. [Google Scholar]
- Li, M.; Wang, X.L.; Ding, Y.Y. Comparison of several daily temperature interpolation methods. J. Anhui Agric. Sci. 2014, 42, 8670–8674. [Google Scholar]
- Fu, B.P. Mountain Climate; Science Press: Beijing, China, 1983; p. 1. [Google Scholar]
- Khandelwal, S.; Goyal, R.; Kaul, N.; Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt. J. Remote Sens. 2017, 21, 87–94. [Google Scholar]
- Thanh, P.; Martin, K.; Trong, T. Land surface temperature variation due to changes in elevation in northwest Vietnam. Climate 2018, 6, 28. [Google Scholar]
- Bonan, G.B. Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces. J. Chem. Ecol. 1995, 8, 2691–2704. [Google Scholar] [CrossRef]
- Anyah, R.O.; Semazzi, F. Idealized simulation of hydrodynamic characteristics of Lake Victoria that potentially modulate regional climate. Int. J. Climatol. 2009, 29, 971–981. [Google Scholar] [CrossRef]
- Mackay, M.D.; Neale, P.J.; Arp, C.D.; Domis, L.N.D.S.; Fang, X.; Gal, G. Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr. 2009, 54, 2315–2329. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Hamlet, A.F.; Fernando, F. Lessons from Inter-Comparison of Decadal Climate Simulations and Observations for the Midwest U.S. and Great Lakes Region. Atmosphere 2019, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Perrie, W.; Gyakum, J.; Caya, D.; Laprise, R. Northern Lake Impacts on Local Seasonal Climate. J. Hydrometeorol. 2007, 8, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.F. Research on Water-Heat Exchange between Land and Air in Badain Jaran Desert Based on Observation; LanZhou University: LanZhou, China, 2015; pp. 79–83. [Google Scholar]
- Zhang, W.W.; Cheng, G.E.; Gao, Y. Characteristics of desert lakes and their protection in Inner Mongolia. J. Inner Mong. Agric. Univ. 2006, 27, 11–14. [Google Scholar]
- Scott, R.W.; Huff, F.A. Lake Effects on Climatic Conditions in the Great Lakes Basin; Illinois State Water Survey: Champaign, IL, USA, 1997; p. 73. [Google Scholar]
- Notaro, M.; Holman, K.D.; Zarrin, A.; Vavrus, V.; Fluck, E. Influence of the Laurentian Great Lakes on Regional Climate. J. Clim. 2013, 26, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Dobson, K.C.; Beaty, L.E.; Rutter, M.A.; Hed, B.; Campbell, M.A. The influence of Lake Erie on changes in temperature and frost dates. Int. J. Climatol. 2020, 40, 5590–5598. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.C.; Lv, S.F.; Meng, X.H.; Li, W.L.; Li, J.L. Simulation of Hydrometeorological Effect of Jiefangcun Reservoir in Jinta Oasis Summer. Plateau Meteorol. 2010, 29, 1414–1422. [Google Scholar]
- Nikoo, E.; Susanne, G.C.; Hagen, K.; Reik, D.; Jan, V. Effects of the Lak Sobradinho Reservoir (Northeastern Brazil) on the Regional Climate. Climate 2017, 5, 50. [Google Scholar]
- Bates, G.T.; Giorgi, F.; Hostetler, S.W. Toward the Simulation of the Effects of the Great Lakes on Regional Climate. Mon. Weather Rev. 1993, 121, 1373–1387. [Google Scholar] [CrossRef]
- Wen, L.J.; Lv, S.; Li, Z.G.; Zhao, L.; Nagabhatla, N. Impacts of the Two Biggest Lakes on Local Temperature and Precipitation in the Yellow River Source Region of the Tibetan Plateau. Adv. Meteorol. 2015, 2015, 248031. [Google Scholar] [CrossRef] [Green Version]
- Momii, K.; Ito, Y. Heat budget estimates for Lake Ikeda, Japan. J. Hydrol. 2008, 361, 362–370. [Google Scholar] [CrossRef]
- Dutra, E.; Stepanenko, V.A.; Balsamo, G.; Viterbo, P.; Miranda, P.M.A.; Mironov, D. An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res. 2010, 15, 100–112. [Google Scholar]
- Stivari, S.M.S.; Oliveira, A.P.; Karam, H.A.; Soares, J. Patterns of local circulation in the Itaipu Lake area: Numerical simulations of lake breeze. J. Appl. Meteorol. 2003, 42, 3750. [Google Scholar] [CrossRef]
- Shao, T.J.; Zhao, J.B.; Dong, Z.B. Water Chemistry of the Lakes and Groundwater in the Badain Jaran Desert. Acta Geogr. Sin. 2011, 66, 662–672. [Google Scholar]
- Edmunds, W.; Ma, J.; Aeschbachhertig, W.; Kipfer, R.; Darbyshire, D. Groundwater recharge history and hydrogeochemical evolution in the minqin basin, north west china. Appl. Geochem. 2006, 21, 2148–2170. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, J.Z.; Zhao, W.; Jiang, Y.; Love, A.J. Profiles of geochemical and isotopic signatures from the Helan Mountains to the eastern Tengger Desert, northwestern China. J. Arid Environ. 2013, 90, 77–87. [Google Scholar] [CrossRef]
- Ma, J.Z.; Wang, X.S.; Edmunds, W.M. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China—A case study of the Shiyang River Basin. J. Arid Environ. 2005, 61, 277–295. [Google Scholar] [CrossRef]
- Gates, J.B.; Edmunds, W.M.; Ma, J.; Scanlon, B.R. Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol. J. 2008, 16, 893–910. [Google Scholar] [CrossRef]
Region | Annual | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | Day | Night | Day | Night | |
Lake area | 33.1 | 4.3 | 39.4 | 6.2 | 53.3 | 22.1 | 29.9 | 4.1 | 9.2 | −14.7 |
Non-area lake | 33.0 | 4.0 | 39.9 | 6.0 | 54.1 | 22.0 | 30.2 | 3.6 | 7.9 | −15.1 |
ΔT | 0.1 | 0.3 | −0.5 | 0.2 | −0.8 | 0.1 | −0.3 | 0.5 | 1.3 | 0.4 |
Site | Tave | Tmin (January) | Tmax (July) | Annual Temperature Range | Diurnal Temperature Range | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
January | April | July | October | Annual | Average | Daily | Average | Daily | |||
Barunjilang | −6.7 | 12.5 | 26.2 | 9.7 | 10.4 | −13.9 | −21.6 | 32.1 | 41.0 | 32.9 | 13.2 |
Baxinggaole | −9.4 | 12.2 | 26.7 | 9.1 | 9.6 | −17.6 | −25.1 | 32.9 | 42.2 | 36.1 | 15.8 |
ΔT | 2.7 | 0.3 | −0.5 | 0.6 | 0.8 | 3.7 | 3.5 | −0.8 | −1.2 | −3.2 | −2.6 |
Site | Annual | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | Day | Night | Day | Night | |
Barunjilang | 12.9 | 7.8 | 15.4 | 10.3 | 28.7 | 23.6 | 11.7 | 7.5 | −4.3 | −9.1 |
Baxinggaole | 12.8 | 6.5 | 15.7 | 9.1 | 29.4 | 24.0 | 11.8 | 6.0 | −6.3 | −12.4 |
ΔT | 0.1 | 1.3 | −0.3 | 1.2 | −0.7 | −0.4 | −0.1 | 1.5 | 2.0 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, N.; Wang, N.; Zhao, L.; Niu, Z.; Liang, X.; Yu, X.; Wen, P.; Su, X. Warm Island Effect in the Lake Region of the Tengger Desert Based on MODIS and Meteorological Station Data. Atmosphere 2021, 12, 1157. https://doi.org/10.3390/atmos12091157
Meng N, Wang N, Zhao L, Niu Z, Liang X, Yu X, Wen P, Su X. Warm Island Effect in the Lake Region of the Tengger Desert Based on MODIS and Meteorological Station Data. Atmosphere. 2021; 12(9):1157. https://doi.org/10.3390/atmos12091157
Chicago/Turabian StyleMeng, Nan, Nai’ang Wang, Liqiang Zhao, Zhenmin Niu, Xiaoyan Liang, Xinran Yu, Penghui Wen, and Xianbao Su. 2021. "Warm Island Effect in the Lake Region of the Tengger Desert Based on MODIS and Meteorological Station Data" Atmosphere 12, no. 9: 1157. https://doi.org/10.3390/atmos12091157
APA StyleMeng, N., Wang, N., Zhao, L., Niu, Z., Liang, X., Yu, X., Wen, P., & Su, X. (2021). Warm Island Effect in the Lake Region of the Tengger Desert Based on MODIS and Meteorological Station Data. Atmosphere, 12(9), 1157. https://doi.org/10.3390/atmos12091157