Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Data
2.2. Methodology
2.3. Multilayer Perceptron (MLP)
2.4. Support Vector Machine (SVM)
2.5. Random Forest (RF)
2.6. Bayesian Optimization
2.7. Evaluation Metrics
3. Results and Discussion
3.1. Using Neighbor Stations
3.2. Using Data from the Target Station
3.3. Comparison of the Two Areas
3.4. Seasonality Performance
3.5. General Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, R.; Huang, A.; Li, B.; Guo, J. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [Google Scholar] [CrossRef]
- Fernández, A.J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere. Atmos. Res. 2018, 202, 112–127. [Google Scholar] [CrossRef]
- Astel, A.; Mazerski, J.; Polkowska, Z.; Namieśsnik, J. Application of PCA and time series analysis in studies of precipitation in Tricity (Poland). Adv. Environ. Res. 2004, 8, 337–349. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilán, P.; García-Marín, A.P.; Zardi, D. Detection of spurious precipitation signals from automatic weather stations in irrigated areas. Int. J. Climatol. 2015, 35, 1556–1568. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, J. Hybrid PSO and GA for Neural Network Evolutionary in Monthly Rainfall Forecasting; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7802. [Google Scholar]
- Cramer, S.; Kampouridis, M.; Freitas, A.A.; Alexandridis, A.K. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst. Appl. 2017, 85, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Teegavarapu, R.S.V.; Chandramouli, V. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol. 2005, 312, 191–206. [Google Scholar] [CrossRef]
- Barrios, A.; Trincado, G.; Garreaud, R. Alternative approaches for estimating missing climate data: Application to monthly precipitation records in south-central Chile. For. Ecosyst. 2018, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H. Hydrologic Analysis and Design, 3rd ed.; Pearson: New York, NY, USA, 2004; ISBN 978-0131424241. [Google Scholar]
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Muttil, N.; Yilmaz, A.G. Genetic Programming-Based Ordinary Kriging for Spatial Interpolation of Rainfall. J. Hydrol. Eng. 2016, 21, 04015062. [Google Scholar] [CrossRef]
- Mair, A.; Fares, A. Comparison of Rainfall Interpolation Methods in a Mountainous Region of a Tropical Island. J. Hydrol. Eng. 2011, 16, 371–383. [Google Scholar] [CrossRef]
- Simolo, C.; Brunetti, M.; Maugeri, M.; Nanni, T. Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach. Int. J. Climatol. 2010, 30, 1564–1576. [Google Scholar] [CrossRef]
- Xia, Y.; Fabian, P.; Stohl, A.; Winterhalter, M. Forest climatology: Estimation of missing values for Bavaria, Germany. Agric. For. Meteorol. 1999, 96, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Teegavarapu, R.S.V.; Tufail, M.; Ormsbee, L. Optimal functional forms for estimation of missing precipitation data. J. Hydrol. 2009, 374, 106–115. [Google Scholar] [CrossRef]
- Teegavarapu, R.S.V. Estimation des données manquantes des précipitations en utilisant la proximité optimale d’imputation métrique base, la classification du plus proche voisin et méthodes d’interpolation à base de cluster. Hydrol. Sci. J. 2014, 59, 2009–2026. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Lin, R.; Huang, S.; Xing, T. A novel approach for precipitation forecast via improved K-nearest neighbor algorithm. Adv. Eng. Inform. 2017, 33, 89–95. [Google Scholar] [CrossRef]
- Gorshenin, A.; Lebedeva, M.; Lukina, S.; Yakovleva, A. Application of Machine Learning Algorithms to Handle Missing Values in Precipitation Data. In Lecture Notes in Computer Science; (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 2019; Volume 11965, pp. 563–577. [Google Scholar]
- Bagirov, A.M.; Mahmood, A.; Barton, A. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach. Atmos. Res. 2017, 188, 20–29. [Google Scholar] [CrossRef]
- Kajewska-Szkudlarek, J. Clustering approach to urban rainfall time series prediction with support vector regression model. Urban Water J. 2020, 17, 235–246. [Google Scholar] [CrossRef]
- Estévez, J.; Bellido-Jiménez, J.A.; Liu, X.; García-Marín, A.P. Monthly Precipitation Forecasts Using Wavelet Neural Networks Models in a Semiarid Environment. Water 2020, 12, 1909. [Google Scholar] [CrossRef]
- Partal, T.; Kişi, Ö. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342, 199–212. [Google Scholar] [CrossRef]
- Li, G.; Ma, X.; Yang, H. A hybrid model for monthly precipitation time series forecasting based on variational mode decomposition with extreme learning machine. Information 2018, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Filho, A.S.F.; Lima, G.A.R. Gap Filling of Precipitation Data by SSA—Singular Spectrum Analysis. J. Phys. Conf. Ser. 2016, 759, 012085. [Google Scholar]
- Sun, M.; Li, X.; Kim, G. Precipitation analysis and forecasting using singular spectrum analysis with artificial neural networks. Clust. Comput. 2019, 22, 12633–12640. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.; Joh, M.; Song, S.K. DeepRain: ConvLSTM network for precipitation prediction using multichannel radar data. arXiv 2017, arXiv:1711.02316. [Google Scholar]
- Ha, J.-H.; Lee, Y.H.; Kim, Y.-H. Forecasting the Precipitation of the Next Day Using Deep Learning. J. Korean Inst. Intell. Syst. 2016, 26, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A Deep Learning-Based Methodology for Precipitation Nowcasting with Radar. Earth Space Sci. 2020, 7, e2019EA000812. [Google Scholar] [CrossRef] [Green Version]
- Estévez, J.; Gavilán, P.; García-Marín, A.P. Spatial regression test for ensuring temperature data quality in southern Spain. Theor. Appl. Climatol. 2018, 131, 309–318. [Google Scholar] [CrossRef]
- Estévez Gualda, J.; Gavilán, P.; Giráldez, J.V. Guidelines on validation procedures for meteorological data from automatic weather stations. J. Hydrol. 2011, 402, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Shanker, M.S.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Luna, A.M.; Lineros, M.L.; Gualda, J.E.; Giráldez Cervera, J.V.; Madueño Luna, J.M. Assessing the Best Gap-Filling Technique for River Stage Data Suitable for Low Capacity Processors and Real-Time Application Using IoT. Sensors 2020, 20, 6354. [Google Scholar] [CrossRef]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric. Water Manag. 2020, 245, 106558. [Google Scholar] [CrossRef]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Fai, C.M.; Afan, H.A.; Ridwam, W.M.; Sefelnasr, A.; El-Shafie, A. Precipitation forecasting using multilayer neural Network and support vector machine optimization based on flow regime algorithm taking into Account uncertainties of soft computing models. Sustainability 2019, 11, 6681. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-García, E.G.; Salcedo-Sanz, S.; Casanova-Mateo, C. Accurate precipitation prediction with support vector classifiers: A study including novel predictive variables and observational data. Atmos. Res. 2014, 139, 128–136. [Google Scholar] [CrossRef]
- Nayak, M.A.; Ghosh, S. Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier. Theor. Appl. Climatol. 2013, 114, 583–603. [Google Scholar] [CrossRef]
- Aftab, S.; Ahmad, M.; Hameed, N.; Bashir, M.S.; Ali, I.; Nawaz, Z. Rainfall prediction in Lahore City using data mining techniques. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 254–260. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Sukovich, E.M.; Ralph, F.M.; Barthold, F.E.; Reynolds, D.W.; Novak, D.R. Extreme quantitative precipitation forecast performance at the weather prediction center from 2001 to 2011. Weather Forecast. 2014, 29, 894–911. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, R.; Maitra, A. A random forest algorithm for nowcasting of intense precipitation events. Adv. Space Res. 2017, 60, 1271–1282. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Gabella, M.; Boscacci, M.; Germann, U.; Berne, A. RainForest: A random forest algorithm for quantitative precipitation estimation over Switzerland. Atmos. Meas. Tech. 2021, 14, 3169–3193. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Li, R.; Suo, X.; Lu, E. Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm and backpropagation neural network. Alex. Eng. J. 2020, 59, 1473–1483. [Google Scholar] [CrossRef]
- Kotthoff, L.; Thornton, C.; Hoos, H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956. [Google Scholar]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and robust automated machine learning. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp. 2962–2970. [Google Scholar]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning; The Springer Series on Challenges in Machine Learning; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-05317-8. [Google Scholar]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. Assessing Neural Network Approaches for Solar Radiation Estimates Using Limited Climatic Data in the Mediterranean Sea. In Proceedings of the 3rd International Electronic Conference on Atmospheric Sciences (ECAS 2020), Online, 16–30 November 2020. [Google Scholar]
- Borji, A.; Itti, L. Bayesian optimization explains human active search. Adv. Neural Inf. Process. Syst. 2013, 26, 55–63. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ryu, J.H. A heuristic gap filling method for daily precipitation series. Water Resour. Manag. 2016, 30, 2275–2294. [Google Scholar] [CrossRef]
- Wuthiwongyothin, S.; Kalkan, C.; Panyavaraporn, J. Evaluating Inverse Distance Weighting and Correlation Coefficient Weighting Infilling Methods on Daily Rainfall Time Series. SNRU J. Sci. Technol. 2021, 13, 71–79. [Google Scholar]
- Sehad, M.; Lazri, M.; Ameur, S. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (North of Algeria) using the multispectral MSG SEVIRI imagery. Adv. Space Res. 2017, 59, 1381–1394. [Google Scholar] [CrossRef]
Station | Alt. [m] | Lat. [ºN] | Long. [ºW] | Mean Annual Rainfall [mm] | Time-Period (Number of Days) |
---|---|---|---|---|---|
Area 1: | |||||
Jaen (JAE) | 299 | 37.89 | 3.77 | 446.54 | From April 2001 to June 2021 (7361) |
La Higuera de Arjona (ARJ) | 257 | 37.95 | 4.00 | 477.68 | From January 2001 to June 2021 (7456) |
Linares (LIN) | 432 | 38.07 | 3.65 | 466.70 | From August 2000 to June 2021 (7601) |
Mancha Real (MAN) | 407 | 37.92 | 3.60 | 390.86 | From August 2000 to June 2021 (7602) |
Marmolejo (MAR) | 208 | 38.06 | 4.13 | 523.36 | From September 2000 to June 2021 (7590) |
Sabiote (SAB) | 791 | 38.08 | 3.24 | 446.98 | From August 2000 to June 2021 (7615) |
TorreblascoPedro (TOR) | 275 | 37.99 | 3.69 | 434.37 | From August 2000 to June 2021(7615) |
Area 2: | |||||
Antequera (ANT) | 440 | 37.03 | 4.56 | 444.72 | From November 2000 to June 2021 (7512) |
Archidona (ARC) | 516 | 37.08 | 4.43 | 457.83 | From December 2000 to June 2021 (7483) |
Cártama (CAR) | 78 | 36.72 | 4.68 | 490.51 | From June 2001 to June 2021 (7300) |
Churriana (CHU) | 17 | 36.67 | 4.50 | 510.32 | From February 2001 to June 2021 (7426) |
Málaga (MAL) | 55 | 36.76 | 4.54 | 461.63 | From October 2000 to June 2021 (7546) |
Pizarra (PIZ) | 71 | 36.77 | 4.72 | 463.47 | From January 2001 to June 2021 (7447) |
Vélez (VEL) | 33 | 36.80 | 4.13 | 490.49 | From October 2000 to June 2021 (7546) |
Target Station | Inputs Approach A | Inputs Approach B | Inputs Approach C |
---|---|---|---|
Area 1: | |||
Jaen | DOY(i) + PARJ(i) + DJAE-LIN + PLIN(i) + DJAE-LIN + PMAN(i) + DJAE-MAN + PMAR(i) + DJAE-MAR + PSAB(i) + DJAE-SAB + PTOR(i) + DJAE-TOR | DOY(i) + PJAE(i − 1) + PJAE(i + 1) | DOY(i) + PJAE(i − 1) + PJAE(i − 2) + PJAE(i + 1) + PJAE(i + 2) |
La Higuera de Arjona | DOY(i) + PJAE(i) + DARJ-JAE + PLIN(i) + DARJ-LIN + PMAN(i) + DARJ-MAN + PMAR(i) + DARJ-MAR + PSAB(i) + DARJ-SAB + PTOR(i) + DARJ-TOR | DOY(i) + PARJ(i − 1) + PARJ(i + 1) | DOY (i) + PARJ(i − 1) + PARJ(i − 2) + PARJ(i + 1) + PARJ(i + 2) |
Linares | DOY(i) + PJAE(i) + DLIN-JAE + PARJ(i) + DLIN-ARJ + PMAN(i) + DLIN-MAN + PMAR(i) + DLIN-MAR + PSAB(i) + DLIN-SAB + PTOR(i) + DLIN-TOR | DOY(i) + PLIN(i − 1) + PLIN(i + 1) | DOY (i) + PLIN(i − 1) + PLIN(i − 2) + PLIN(i + 1) + PLIN(i + 2) |
Mancha Real | DOY(i) + PJAE(i) + DMAN-JAE + PARJ(i) + DMAN-ARJ + PLIN(i) + DMAN-LIN + PMAR(i) + DMAN-MAR + PSAB(i) + DMAN-SAB + PTOR(i) + DMAN-TOR | DOY(i) + PMAN(i − 1) + PMAN(i + 1) | DOY (i) + PMAN(i − 1) + PMAN(i − 2) + PMAN(i + 1) + PMAN(i + 2) |
Marmolejo | DOY(i) + PJAE(i) + DMAR-JAE + PARJ(i) + DMAR-ARJ + PLIN(i) + DMAR-LIN + PMAN(i) + DMAR-MAN + PSAB(i) + DMAR-SAB + PTOR(i) + DMAR-TOR | DOY(i) + PMAR(i − 1) + PMAR(i + 1) | DOY (i) + PMAR(i − 1) + PMAR(i − 2) + PMAR(i + 1) + PMAR(i + 2) |
Sabiote | DOY(i) + PJAE(i) + DSAB-JAE + PARJ(i) + DSAB-ARJ + PLIN(i) + DSAB-LIN + PMAN(i) + DSAB-MAN + PMAR(i) + DSAB-MAR + PTOR(i) + DSAB-TOR | DOY(i) + PSAB(i − 1) + PSAB(i + 1) | DOY (i) + PSAB(i − 1) + PSAB(i − 2) + PSAB(i + 1) + PSAB(i + 2) |
TorreblascoPedro | DOY(i) + PJAE(i) + DTOR-JAE + PARJ(i) + DTOR-ARJ + PLIN(i) + DTOR-LIN + PMAN(i) + DTOR-MAN + PMAR(i) + DTOR-MAR + PSAB(i) + DTOR-SAB | DOY(i) + PTOR(i − 1) + PTOR(i + 1) | DOY (i) + PTOR(i − 1) + PTOR(i − 2) + PTOR(i + 1) + PTOR(i + 2) |
Area 2: | |||
Antequera | DOY(i) + PARC(i) + DANT-ARC + PCAR(i) + DANT-CAR + PCHU(i) + DANT-CHU + PMAL(i) + DANT-MAL + PPIZ(i) + DANT-PIZ + PVEL(i) + DANT-VEL | DOY(i) + PANT(i − 1) + PANT(i + 1) | DOY (i) + PANT(i − 1) + PANT(i − 2) + PANT(i + 1) + PANT(i + 2) |
Archidona | DOY(i) + PANT(i) + DARC-ANT + PCAR(i) + DARC-CAR + PCHU(i) + DARC-CHU + PMAL(i) + DARC-MAL + PPIZ(i) + DARC-PIZ + PVEL(i) + DARC-VEL | DOY(i) + PARC(i − 1) + PARC(i + 1) | DOY (i) + PARC(i − 1) + PARC(i − 2) + PARC(i + 1) + PARC(i + 2) |
Cártama | DOY(i) + PANT(i) + DCAR-ANT + PARC(i) + DCAR-ARC + PCHU(i) + DCAR-CHU + PMAL(i) + DCAR-MAL + PPIZ(i) + DCAR-PIZ + PVEL(i) + DCAR-VEL | DOY(i) + PCAR(i − 1) + PCAR(i + 1) | DOY (i) + PCAR(i − 1) + PCAR(i − 2) + PCAR(i + 1) + PCAR(i + 2) |
Churriana | DOY(i) + PANT(i) + DCHU-ANT + PARC(i) + DCHU-ARC + PCAR(i) + DCHU-CAR + PMAL(i) + DCHU-MAL + PPIZ(i) + DCHU-PIZ + PVEL(i) + DCHU-VEL | DOY(i) + PCHU(i − 1) + PCHU(i + 1) | DOY (i) + PCHU(i − 1) + PCHU(i − 2) + PCHU(i + 1) + PCHU(i + 2) |
Málaga | DOY(i) + PANT(i) + DMAL-ANT + PARC(i) + DMAL-ARC + PCAR(i) + DMAL-CAR + PCHU(i) + DMAL-CHU + PPIZ(i) + DMAL-PIZ + PVEL(i) + DMAL-VEL | DOY(i) + PMAL(i − 1) + PMAL(i + 1) | DOY (i) + PMAL(i − 1) + PMAL(i − 2) + PMAL(i + 1) + PMAL(i + 2) |
Pizarra | DOY(i) + PANT(i) + DPIZ-ANT + PARC(i) + DPIZ-ARC + PCAR(i) + DPIZ-CAR + PCHU(i) + DPIZ-CHU + PMAL(i) + DPIZ-MAL + PVEL(i) + DPIZ-VEL | DOY(i) + PPIZ(i − 1) + PPIZ(i + 1) | DOY (i) + PPIZ(i − 1) + PPIZ(i − 2) + PPIZ(i + 1) + PPIZ(i + 2) |
Vélez | DOY(i) + PANT(i) + DVE-ANT + PARC(i) + DVEL-ARC + PCAR(i) + DVEL-CAR + PCHU(i) + DVEL-CHU + PMAL(i) + DVEL-MAL + PPIZ(i) + DVEL-PIZ | DOY(i) + PVEL(i − 1) + PVEL(i + 1) | DOY (i) + PVEL(i − 1) + PVEL(i − 2) + PVEL(i + 1) + PVEL(i + 2) |
Approaches: | |||||
---|---|---|---|---|---|
Location | Models | Hyperparameters | A | B | C |
La Higuera de Arjona | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 87 | 53 | ||
neurons | (20, 20) | (9, 15, 10) | (6, 15, 9) | ||
SVM | kernel | RBF | RBF | poly | |
c | 10.0 | 10.0 | 1.855 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 100 | 100 | 91 | |
max_features | sqrt | auto | log2 | ||
Jaen | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 92 | 61 | 98 | ||
neurons | (20, 20) | (2, 1, 12) | (1, 10, 8) | ||
SVM | kernel | linear | linear | RBF | |
c | 1.758 | 9.730 | 10.0 | ||
epsilon | 0.739 | 0.01 | 0.01 | ||
RF | n_estimators | 94 | 95 | 100 | |
max_features | auto | log2 | log2 | ||
Linares | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 100 | 100 | ||
neurons | (20, 20) | (1, 1, 1) | (1, 1, 1) | ||
SVM | kernel | linear | RBF | RBF | |
c | 10.0 | 4.023 | 10.0 | ||
epsilon | 0.01 | 0.018 | 0.01 | ||
RF | n_estimators | 100 | 97 | 80 | |
max_features | auto | sqrt | log2 | ||
Mancha Real | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 99 | 100 | ||
neurons | (20, 20) | (5, 14) | (1, 1, 1) | ||
SVM | kernel | RBF | RBF | RBF | |
c | 10.0 | 6.235 | 9.211 | ||
epsilon | 0.01 | 0.010 | 0.01 | ||
RF | n_estimators | 75 | 41 | 46 | |
max_features | auto | sqrt | log2 | ||
Marmolejo | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 96 | 10 | ||
neurons | (20, 6) | (5, 3, 11) | (1, 11) | ||
SVM | kernel | linear | RBF | RBF | |
c | 10.0 | 4.350 | 9.970 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 100 | 31 | 100 | |
max_features | auto | auto | sqrt | ||
Sabiote | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 100 | 95 | ||
neurons | (20, 20) | (1, 1, 1) | (2, 11, 9) | ||
SVM | kernel | linear | RBF | RBF | |
c | 10.0 | 10.0 | 10.0 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 72 | 39 | 57 | |
max_features | log2 | log2 | log2 | ||
Torreblascopedro | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 100 | 72 | 73 | ||
neurons | (20, 12) | (1, 4, 13) | (5, 1, 17) | ||
SVM | kernel | linear | RBF | poly | |
c | 3.795 | 3.108 | 6.205 | ||
epsilon | 0.01 | 0.01 | 0.012 | ||
RF | n_estimators | 81 | 64 | 94 | |
max_features | log2 | sqrt | sqrt | ||
Antequera | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 200 | 174 | 61 | ||
neurons | (13, 8) | (5, 2, 20) | (14, 11, 13) | ||
SVM | kernel | linear | RBF | RBF | |
c | 8.684 | 7.627 | 4.981 | ||
epsilon | 0.225 | 0.01 | 0.014 | ||
RF | n_estimators | 55 | 94 | 41 | |
max_features | auto | auto | log2 | ||
Archidona | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 94 | 40 | 11 | ||
neurons | (13, 5, 18) | (11, 12, 1) | (16, 11, 19) | ||
SVM | kernel | linear | poly | RBF | |
c | 7.246 | 4.531 | 4.104 | ||
epsilon | 0.01 | 0.01 | 0.013 | ||
RF | n_estimators | 81 | 93 | 100 | |
max_features | auto | auto | sqrt | ||
Cártama | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 129 | 10 | 112 | ||
neurons | (8, 13, 17) | (1, 1, 1) | (14, 17, 6) | ||
SVM | kernel | linear | RBF | poly | |
c | 6.273 | 7.830 | 3.862 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 92 | 10 | 38 | |
max_features | auto | sqrt | log2 | ||
Churriana | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 180 | 200 | 70 | ||
neurons | (20, 20, 18) | (1, 1, 1) | (5, 15, 7) | ||
SVM | kernel | linear | RBF | RBF | |
c | 10.0 | 10.0 | 5.963 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 100 | 40 | 36 | |
max_features | log2 | log2 | sqrt | ||
Málaga | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 158 | 97 | 127 | ||
neurons | (20, 20, 20) | (17, 11, 10) | (13, 4, 16) | ||
SVM | kernel | linear | RBF | RBF | |
c | 8.784 | 9.999 | 6.952 | ||
epsilon | 0.01 | 0.01 | 0.011 | ||
RF | n_estimators | 69 | 14 | 10 | |
max_features | log2 | log2 | log2 | ||
Pizarra | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 192 | 94 | 171 | ||
neurons | (13, 15, 8) | (3, 4, 6) | (14, 1, 6) | ||
SVM | kernel | linear | RBF | RBF | |
c | 7.642 | 10.0 | 4.031 | ||
epsilon | 0.015 | 0.01 | 0.01 | ||
RF | n_estimators | 76 | 45 | 95 | |
max_features | auto | sqrt | sqrt | ||
Vélez-Málaga | MLP | activation | ReLU | ReLU | ReLU |
optimizer | ADAM | ADAM | ADAM | ||
epochs | 200 | 180 | 139 | ||
neurons | (20, 20, 20) | (15, 13, 10) | (8, 2, 10) | ||
SVM | kernel | RBF | RBF | RBF | |
c | 10.0 | 6.032 | 10.0 | ||
epsilon | 0.01 | 0.01 | 0.01 | ||
RF | n_estimators | 72 | 62 | 78 | |
max_features | sqrt | log2 | sqrt |
Stations (Area 1) | Model | RMSE [mm/day] | MBE [mm/day] | R2 |
---|---|---|---|---|
La Higuera de Arjona | MLP | 1.363 | 0.016 | 0.894 |
SVM | 1.800 | −0.106 | 0.818 | |
RF | 1.384 | 0.026 | 0.889 | |
LI | 1.502 | −0.008 | 0.869 | |
Jaen | MLP | 1.767 | −0.097 | 0.827 |
SVM | 1.822 | −0.064 | 0.823 | |
RF | 1.880 | 0.023 | 0.804 | |
LI | 1.916 | 0.051 | 0.797 | |
Linares | MLP | 1.723 | 0.083 | 0.817 |
SVM | 1.808 | −0.106 | 0.798 | |
RF | 1.730 | 0.001 | 0.815 | |
LI | 1.896 | −0.001 | 0.784 | |
Mancha Real | MLP | 1.662 | −0.072 | 0.831 |
SVM | 1.948 | −0.195 | 0.780 | |
RF | 1.730 | −0.078 | 0.816 | |
LI | 1.852 | 0.110 | 0.790 | |
Marmolejo | MLP | 2.176 | −0.187 | 0.791 |
SVM | 2.154 | −0.169 | 0.795 | |
RF | 2.129 | 0.041 | 0.801 | |
LI | 2.392 | −0.249 | 0.753 | |
Sabiote | MLP | 2.049 | −0.101 | 0.752 |
SVM | 2.135 | −0.224 | 0.739 | |
RF | 2.105 | −0.061 | 0.740 | |
LI | 2.112 | −0.006 | 0.742 | |
Torreblascopedro | MLP | 1.270 | −0.035 | 0.894 |
SVM | 1.246 | −0.005 | 0.898 | |
RF | 1.359 | 0.019 | 0.878 | |
LI | 1.277 | 0.047 | 0.894 | |
Mean values | 1.792 | −0.048 | 0.815 |
Stations (Area 2) | Model | RMSE [mm/day] | MBE [mm/day] | R2 |
---|---|---|---|---|
Antequera | MLP | 1.595 | 0.035 | 0.875 |
SVM | 1.632 | −0.104 | 0.875 | |
RF | 2.009 | 0.042 | 0.799 | |
LI | 2.839 | 0.100 | 0.684 | |
Archidona | MLP | 1.811 | −0.043 | 0.844 |
SVM | 1.817 | −0.168 | 0.844 | |
RF | 2.002 | −0.019 | 0.809 | |
LI | 3.286 | −0.041 | 0.594 | |
Cártama | MLP | 2.640 | −0.075 | 0.756 |
SVM | 2.502 | −0.106 | 0.778 | |
RF | 2.820 | 0.002 | 0.737 | |
LI | 2.630 | 0.061 | 0.756 | |
Churriana | MLP | 2.192 | −0.052 | 0.876 |
SVM | 2.465 | −0.147 | 0.860 | |
RF | 2.315 | 0.019 | 0.862 | |
LI | 2.973 | −0.061 | 0.790 | |
Málaga | MLP | 2.485 | 0.099 | 0.830 |
SVM | 2.448 | −0.170 | 0.825 | |
RF | 2.433 | 0.012 | 0.816 | |
LI | 2.610 | 0.04 | 0.785 | |
Pizarra | MLP | 2.032 | 0.043 | 0.854 |
SVM | 2.083 | −0.112 | 0.853 | |
RF | 2.032 | 0.039 | 0.854 | |
LI | 2.108 | 0.079 | 0.842 | |
Vélez-Málaga | MLP | 3.219 | −0.074 | 0.742 |
SVM | 3.531 | −0.376 | 0.706 | |
RF | 3.306 | −0.020 | 0.719 | |
LI | 3.489 | −0.157 | 0.692 | |
Mean values | 2.475 | −0.041 | 0.794 |
One Day (B) | Two Days (C) | ||||||
---|---|---|---|---|---|---|---|
Stations (Area 1) | Model | RMSE [mm/day] | MBE [mm/day] | R2 | RMSE [mm/day] | MBE [mm/day] | R2 |
La Higuera de Arjona | MLP | 4.409 | −0.021 | 0.023 | 4.079 | 0.061 | 0.051 |
SVM | 4.601 | −1.218 | 0.008 | 4.348 | −1.225 | 0.027 | |
RF | 4.524 | −0.880 | 0.020 | 4.224 | −0.932 | 0.033 | |
Jaen | MLP | 3.875 | −1.071 | 0.016 | 4.423 | −0.016 | 0.022 |
SVM | 3.857 | −1.039 | 0.018 | 4.613 | −1.189 | 0.007 | |
RF | 3.785 | −0.771 | 0.019 | 4.583 | −1.103 | 0.011 | |
Linares | MLP | 4.797 | −1.378 | 0.015 | 4.455 | −1.260 | 0.010 |
SVM | 4.754 | −1.308 | 0.019 | 4.423 | −1.202 | 0.010 | |
RF | 4.719 | −0.940 | 0.012 | 4.371 | −0.911 | 0.014 | |
Mancha Real | MLP | 3.246 | 0.128 | 0.047 | 3.288 | 0.305 | 0.012 |
SVM | 3.450 | −0.946 | 0.005 | 3.390 | −0.842 | 0.002 | |
RF | 3.386 | −0.820 | 0.021 | 3.383 | −0.788 | 0.003 | |
Marmolejo | MLP | 5.530 | −1.459 | 0.012 | 5.396 | −1.374 | 0.014 |
SVM | 5.501 | −1.410 | 0.022 | 5.360 | −1.307 | 0.015 | |
RF | 5.474 | −0.947 | 0.014 | 5.235 | −0.761 | 0.028 | |
Sabiote | MLP | 3.992 | −1.159 | 0.026 | 4.186 | −1.114 | 0.008 |
SVM | 3.937 | −1.091 | 0.030 | 4.155 | −1.041 | 0.006 | |
RF | 3.893 | −0.797 | 0.016 | 4.119 | −0.910 | 0.010 | |
Torreblascopedro | MLP | 4.658 | −1.287 | 0.022 | 4.283 | −1.204 | 0.011 |
SVM | 4.626 | −1.236 | 0.027 | 4.263 | −1.167 | 0.010 | |
RF | 4.539 | −0.900 | 0.021 | 4.202 | −0.802 | 0.015 | |
Mean values | 4.359 | −0.978 | 0.034 | 4.322 | −0.894 | 0.037 |
One Day (B) | Two Days (C) | ||||||
---|---|---|---|---|---|---|---|
Stations (Area 2) | Model | RMSE [mm/day] | MBE [mm/day] | R2 | RMSE [mm/day] | MBE [mm/day] | R2 |
Antequera | MLP | 5.035 | −0.246 | 0.027 | 4.521 | −1.246 | 0.048 |
SVM | 5.243 | −1.296 | 0.021 | 4.480 | −1.197 | 0.045 | |
RF | 5.229 | −1.221 | 0.005 | 4.467 | −1.163 | 0.017 | |
Archidona | MLP | 4.108 | −1.095 | 0.008 | 4.109 | −0.059 | 0.041 |
SVM | 4.089 | −1.012 | 0.004 | 4.328 | −1.180 | 0.027 | |
RF | 4.083 | −0.480 | 0.023 | 4.252 | −0.695 | 0.029 | |
Cártama | MLP | 5.479 | −1.149 | 0.009 | 5.235 | 0.239 | 0.040 |
SVM | 5.550 | −1.144 | 0.027 | 5.431 | −1.132 | 0.021 | |
RF | 5.631 | −0.896 | 0.021 | 5.374 | −1.054 | 0.024 | |
Churriana | MLP | 6.551 | −1.314 | 0.051 | 6.849 | −1.406 | 0.017 |
SVM | 6.449 | −1.263 | 0.045 | 6.817 | −1.367 | 0.009 | |
RF | 6.448 | −1.148 | 0.022 | 6.781 | −1.263 | 0.012 | |
Málaga | MLP | 5.028 | 0.294 | 0.079 | 6.850 | −1.324 | 0.044 |
SVM | 5.279 | −1.028 | 0.023 | 6.765 | −1.273 | 0.056 | |
RF | 5.104 | −0.884 | 0.079 | 6.693 | −1.182 | 0.041 | |
Pizarra | MLP | 5.152 | 0.253 | 0.031 | 5.871 | 0.014 | 0.050 |
SVM | 5.266 | −1.071 | 0.044 | 6.064 | −1.205 | 0.081 | |
RF | 5.267 | −0.785 | 0.025 | 6.058 | −1.074 | 0.021 | |
Vélez-Málaga | MLP | 5.295 | 0.191 | 0.076 | 5.360 | 0.149 | 0.061 |
SVM | 5.535 | −1.198 | 0.047 | 5.544 | −1.144 | 0.040 | |
RF | 5.465 | −1.046 | 0.052 | 5.489 | −1.054 | 0.056 | |
Mean values | 5.299 | −0.835 | 0.019 | 5.587 | −0.934 | 0.015 |
Station | RMSE (mm/day) | R2 |
---|---|---|
La Higuera de Arjona | 0.139 | 0.025 |
Jaén | 0.149 | 0.03 |
Linares | 0.173 | 0.033 |
Mancha Real | 0.19 | 0.041 |
Marmolejo | 0.263 | 0.048 |
Sabiote | 0.063 | 0.010 |
Torreblascopedro | 0.031 | 0.004 |
Antequera | 1.244 | 0.191 |
Archidona | 1.475 | 0.25 |
Cártama | 0.128 | 0.022 |
Churriana | 0.781 | 0.086 |
Málaga | 0.177 | 0.045 |
Pizarra | 0.076 | 0.012 |
Vélez-Málaga | 0.265 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellido-Jiménez, J.A.; Gualda, J.E.; García-Marín, A.P. Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere 2021, 12, 1158. https://doi.org/10.3390/atmos12091158
Bellido-Jiménez JA, Gualda JE, García-Marín AP. Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere. 2021; 12(9):1158. https://doi.org/10.3390/atmos12091158
Chicago/Turabian StyleBellido-Jiménez, Juan Antonio, Javier Estévez Gualda, and Amanda Penélope García-Marín. 2021. "Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain" Atmosphere 12, no. 9: 1158. https://doi.org/10.3390/atmos12091158
APA StyleBellido-Jiménez, J. A., Gualda, J. E., & García-Marín, A. P. (2021). Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere, 12(9), 1158. https://doi.org/10.3390/atmos12091158