Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion
Abstract
:1. Introduction
2. Theoretical Framework
3. Flux–Profile Relationships
3.1. Businger–Dyer Formulation
3.2. Beljaars–Holtslag Formulation
3.3. CASES-99 Formulation
3.4. SHEBA Formulation
4. Effect of the Similarity Function Expressions on and
4.1. Universal Functions for Wind and Temperature Gradient
- SHEBA led to a trend similar to that expected, with a single maximum at and when and . We were not able to reproduce the local minimum at the large stability values () reported in [14].
- retrieved adopting the Beljaars–Holtslag presented a first maximum at , but beyond that it did not decrease monotonically as expected, reaching a second maximum at . The presence of such a secondary maximum might be attributed to the limited values that can be observed at midlatitudes, i.e., where the Beljaars–Holtslag dataset was acquired.
- CASES-99 performance was disappointing, leading to a function that increased as stability increased.
4.2. Universal Functions for Wind and Temperature Profile
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahrt, L. Nocturnal boundary-layer regimes. Bound.-Layer Meteorol. 1998, 88, 255–278. [Google Scholar] [CrossRef]
- Mahrt, L. Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn. 1998, 11, 263–279. [Google Scholar] [CrossRef]
- De Bruin, H.A.R. Analytic solutions of the equations governing the temperature fluctuation method. Bound.-Layer Meteorol. 1994, 68, 427–432. [Google Scholar] [CrossRef]
- Malhi, Y.S. The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteorol. 1995, 74, 389–396. [Google Scholar] [CrossRef]
- Grachev, A.A.; Fairall, C.W.; Persson, P.O.G.; Andreas, E.L.; Guest, P.S. Stable Boundary-Layer Scaling Regimes: The Sheba Data. Bound.-Layer Meteorol. 2005, 116, 201–235. [Google Scholar] [CrossRef]
- Basu, S.; Holtslag, B.; Van De Wiel, B.J.H.; Moene, A.; Steeneveld, G.-J. An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys. 2007, 56, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Sorbjan, Z. Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci. 2006, 63, 1526–1537. [Google Scholar] [CrossRef] [Green Version]
- Van de Wiel, B.J.H.; Vignon, E.; Baas, P.; van Hooijdonk, I.G.S.; van der Linden, S.J.A.; van Hooft, J.A.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C. Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci. 2017, 74, 1057–1073. [Google Scholar] [CrossRef] [Green Version]
- Van De Wiel, B.J.H.; Moene, A.F.; Jonker, H.J.J. The Cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci. 2012, 69, 3097–3115. [Google Scholar] [CrossRef] [Green Version]
- Van De Wiel, B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Donda, J.M.M.; Sun, J.; Holtslag, A.A.M. The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci. 2012, 69, 3116–3127. [Google Scholar] [CrossRef] [Green Version]
- van de Wiel, B.J.H.; Basu, S.; Moene, A.F.; Jonker, H.J.J.; Steeneveld, G.J.; Holtslag, A.A.M. Comments on “An extremum solution of the Monin-Obukhov similarity equations”. J. Atmos. Sci. 2011, 68, 1405–1408. [Google Scholar] [CrossRef]
- van de Wiel, B.J.H.; Moene, A.F.; Steeneveld, G.J.; Hartogensis, O.K.; Holtslag, A.A.M. Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust. 2007, 79, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bras, R.L. An extremum solution of the Monin–Obukhov similarity equations. J. Atmos. Sci. 2010, 67, 485–499. [Google Scholar] [CrossRef]
- Srivastava, P.; Sharan, M. Analysis of dual nature of heat flux predicted by Monin-Obukhov similarity theory: An impact of empirical forms of stability correction functions. J. Geophys. Res. Atmos. 2019, 124, 3627–3646. [Google Scholar] [CrossRef]
- Mahrt, L. The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification. Bound.-Layer Meteorol. 2007, 125, 245–264. [Google Scholar] [CrossRef]
- Basu, S.; Porté-Agel, F.; Foufoula-Georgiou, E.; Vinuesa, J.-F.; Pahlow, M. Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteorol. 2005, 119, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Luhar, A.K.; Rayner, K.N. Methods to estimate surface fluxes of momentum and heat from routine weather observations for dispersion applications under stable stratification. Bound.-Layer Meteorol. 2009, 132, 437–454. [Google Scholar] [CrossRef]
- Luhar, A.K.; Hurley, P.J.; Rayner, K.N. Modelling near-surface low winds over land under stable conditions: Sensitivity tests, flux-gradient relationships, and stability parameters. Bound.-Layer Meteorol. 2008, 130, 249–274. [Google Scholar] [CrossRef]
- Cheng, Y.; Parlange, M.B.; Brutsaert, W. Pathology of Monin-Obukhov similarity in the stable boundary layer. J. Geophys. Res. Space Phys. 2005, 110, D06101. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteorol. 2005, 118, 431–447. [Google Scholar] [CrossRef]
- Mahrt, L.; Moore, E.; Vickers, D.; Jensen, N.O. Dependence of turbulent and mesoscale velocity variances on scale and stability. J. Appl. Meteorol. 2001, 40, 628–641. [Google Scholar] [CrossRef]
- Howell, J.F.; Sun, J. Surface-layer fluxes in stable conditions. Bound.-Layer Meteorol. 1999, 90, 495–520. [Google Scholar] [CrossRef]
- Galperin, B.; Sukoriansky, S.; Anderson, P.S. On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 2007, 8, 65–69. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S.; Elperin, T.; Kleeorin, N.; L’Vov, V.; Rogachevskii, I. Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves. Bound.-Layer Meteorol. 2009, 133, 139–164. [Google Scholar] [CrossRef] [Green Version]
- Tennekes, H. Similarity relations, scaling laws and spectral dynamics. In Atmospheric Turbulence and Air Pollution Modelling; Nieuwstadt, F.T.M., van Dop, H., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 37–68. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S.; Esau, I.; Kleeorin, N.; Rogachevskii, I.; Kouznetsov, R. On the velocity gradient in stably stratified sheared flows. part 1: Asymptotic analysis and applications. Bound.-Layer Meteorol. 2010, 135, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T. The critical Richardson number and the ratio of the Eddy transport coefficients obtained from a turbulence closure model. J. Atmos. Sci. 1975, 32, 926–933. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Esau, I.; Mauritsen, T.; Milesf, M.W. Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Q. J. R. Meteorol. Soc. 2008, 134, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Zilitinkevich, S.S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I. Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteorol. 2007, 125, 167–191. [Google Scholar] [CrossRef] [Green Version]
- Mauritsen, T.; Svensson, G. Observations of stably stratified shear-driven atmospheric turbulence at low and high richardson numbers. J. Atmos. Sci. 2007, 64, 645–655. [Google Scholar] [CrossRef]
- Mauritsen, T.; Svensson, G.; Zilitinkevich, S.S.; Esau, I.; Enger, L.; Grisogono, B. A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci. 2007, 64, 4113–4126. [Google Scholar] [CrossRef]
- Venayagamoorthy, S.K.; Stretch, D. On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech. 2010, 644, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Kouznetsov, R.D.; Zilitinkevich, S. On the velocity gradient in stably stratified sheared flows. Part 2: Observations and models. Bound.-Layer Meteorol. 2010, 135, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. The cospectral gap and turbulent flux calculations. J. Atmos. Ocean. Technol. 2003, 20, 660–672. [Google Scholar] [CrossRef]
- Nappo, C.J. An Introduction to Atmospheric Gravity Waves, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Dyer, A.J. A review of flux-profile relationships. Bound.-Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
- Hicks, B.B. Wind profile relationships from the ‘wangara’ experiment. Q. J. R. Meteorol. Soc. 1976, 102, 535–551. [Google Scholar] [CrossRef]
- Högström, U.; Bergström, H.; Smedman, A.-S.; Halldin, S.; Lindroth, A. Turbulent exchange above a pine forest, I: Fluxes and gradients. Bound.-Layer Meteorol. 1989, 49, 197–217. [Google Scholar] [CrossRef]
- Högström, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteorol. 1988, 42, 55–78. [Google Scholar] [CrossRef]
- Högström, U. Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteorol. 1996, 78, 215–246. [Google Scholar] [CrossRef]
- Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Carson, D.J.; Richards, P.J.R. Modelling surface turbulent fluxes in stable conditions. Bound.-Layer Meteorol. 1978, 14, 67–81. [Google Scholar] [CrossRef]
- Van Ulden, A.P.; Holtslag, A.A.M. Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 1985, 24, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Poulos, G.S.; Blumen, W.; Fritts, D.C.; Lundquist, J.K.; Sun, J.; Burns, S.P.; Nappo, C.; Banta, R.; Newsom, R.; Cuxart, J.; et al. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 2002, 83, 555–581. [Google Scholar] [CrossRef]
- Chenge, Y.; Brutsaert, W. Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteorol. 2005, 114, 519–538. [Google Scholar] [CrossRef]
- Uttal, T.; Curry, J.A.; McPhee, M.G.; Perovich, D.K.; Moritz, R.E.; Maslanik, J.A.; Guest, P.S.; Stern, H.L.; Moore, J.A.; Turenne, R.; et al. Surface heat budget of the Arctic Ocean. Bull. Am. Meteorol. Soc. 2002, 83, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Grachev, A.A.; Andreas, E.L.; Fairall, C.; Guest, P.S.; Persson, P.O.G. SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteorol. 2007, 124, 315–333. [Google Scholar] [CrossRef]
- Gryanik, V.M.; Lüpkes, C.; Grachev, A.; Sidorenko, D. New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. J. Atmos. Sci. 2020, 77, 2687–2716. [Google Scholar] [CrossRef]
- Smedman-Högström, A.-S.; Högström, U. Spectral gap in surface-layer measurements. J. Atmos. Sci. 1975, 32, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Klipp, C.L.; Mahrt, L. Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Q. J. R. Meteorol. Soc. 2004, 130, 2087–2103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casasanta, G.; Sozzi, R.; Petenko, I.; Argentini, S. Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion. Atmosphere 2021, 12, 1197. https://doi.org/10.3390/atmos12091197
Casasanta G, Sozzi R, Petenko I, Argentini S. Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion. Atmosphere. 2021; 12(9):1197. https://doi.org/10.3390/atmos12091197
Chicago/Turabian StyleCasasanta, Giampietro, Roberto Sozzi, Igor Petenko, and Stefania Argentini. 2021. "Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion" Atmosphere 12, no. 9: 1197. https://doi.org/10.3390/atmos12091197
APA StyleCasasanta, G., Sozzi, R., Petenko, I., & Argentini, S. (2021). Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion. Atmosphere, 12(9), 1197. https://doi.org/10.3390/atmos12091197