Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurement of PTEs
2.3. Pollution and Ecological Risk Assessments
2.4. Health Risk Assessment
2.5. Measurement of Cu, Zn, and Pb Isotopes
3. Results and Discussion
3.1. Characteristics of PTEs in Road Dust (<10 μm)
3.1.1. Concentrations of PTEs
3.1.2. Pollution Assessment of PTEs
3.1.3. Ecological Risk Assessments
3.1.4. Health Risk Assessments
3.2. Pollution Source and Environmental Impact of PTEs in the PM10 Fraction of Road Dust
3.2.1. Statistical Analysis
3.2.2. Elemental Ratios
3.2.3. Cu, Zn, and Pb Isotopic Compositions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trujillo-Gonzalez, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jimenez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef] [PubMed]
- KOSIS (Korean Statistical Information Service). 2021. Available online: www.kosis.kr (accessed on 19 September 2021).
- Khan, A.; Khan, S.; Khan, M.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Lv, J.; Wand, Y. PMF receptor models and sequential Gaussian simulation to determine the quantitative sources and hazardous areas of potentially toxic elements in soils. Geoderma 2019, 353, 347–358. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Feng, N.; Zhu, M.; Tian, J. Potentially toxic element (PTE) levels in maize, soil, and irrigation water and health risks through maize consumption in northern Ningxia, China. BMC Public Health 2020, 20, 1729. [Google Scholar] [CrossRef]
- Capra, G.F.; Coppola, E.; Odierna, P.; Grilli, E.; Vacca, S.; Buondonno, A. Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: A paradigmatic case study in an area affected by illegal landfills. J. Geochem. Explor. 2014, 145, 169–180. [Google Scholar] [CrossRef]
- de Souza, E.S.; Fernandes, A.R.; de Souza Braz, A.M.; Sabino, L.L.L.; Alleoni, L.R.F. Potentially toxic elements (PTEs) in soils from the surroundings of the Trans-Amazonian Highway, Brazil. Environ. Monit. Assess. 2015, 187, 4074. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, B.; Najmeddin, A.; Moore, F.; Afshari, M.P. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotoxicol. Environ. Saf. 2019, 167, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Baudh, K.; Nasr, M. Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ. Sci. Pollut. Res. Int. 2019, 26, 30413–30425. [Google Scholar] [CrossRef]
- Gruszecka-Kosowska, A.; Baran, A.; Wdowin, M.; Mazur-Kajta, K.; Czech, T. The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: A case study. Environ. Geochem. Health 2020, 42, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Choi, J.Y.; Lim, J.S.; Ra, K. Pollution caused by potentially toxic elements present in road dust from industrial areas in Korea. Atmosphere 2020, 11, 1336. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea. Sci. Rep. 2021, 11, 7238. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.F.; Lu, B.; Ji, Y.Q.; Zhao, X.Y.; Bai, Z.P.; Xu, Y.H.; Liu, Y.; Jiang, H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J. Environ. Monit. 2012, 14, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar]
- Logiewa, A.; Mizagowicz, A.; Krennhuber, K.; Lanzerstofer, C. Variation in the concentration of metals in road dust size fractions between 2 μm and 2 mm: Results from three metallurgical centres in Poland. Arc. Environ. Contam. Toxicol. 2020, 78, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.; Colvile, R.; Arnold, S.; Bowen, E.; Shallcross, D.; Martin, D.; Price, C.; Tate, J.; ApSimon, H.; Robins, A. On street observation of particulate matter movement and dispersion due to traffic on an urban road. Atmos. Environ. 2008, 42, 3911–3926. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X. Heavy metal contents of road-deposited sediment along the urban−rural gradient around Beijing and its potential contribution to runoff pollution. Environ. Sci. Technol. 2011, 45, 7120–7127. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [Google Scholar] [CrossRef]
- Al-Shidi, H.; Sulaiman, H.; Al-Reasi, H.A.; Jamil, F.; Aslam, M. Human and ecological risk assessment of heavy metals in different particle sizes of road dust in Muscat, Oman. Environ. Sci. Pollut. Res. 2021, 28, 33980–33993. [Google Scholar] [CrossRef]
- Vlasov, D.; Kosheleva, N.; Kasimov, N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2021, 761, 142367. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.T.; Chen, Z.L.; Bi, C.J.; Wang, L.; Teng, J.Y.; Li, Y.S.; Xu, S.Y. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, J.; Ruan, X.; Chen, X. Compound health risk assessment of cumulative heavy metal exposure: A case study of a village near a battery factory in Henan Province, China. Environ. Sci. Process. Impacts 2020, 22, 1408–1422. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Risk-based concentration table. In Philadelphia. PA; United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- USEPA (US Environmental Protection Agency). Guidelines for Carcinogenic Risk Assessment; Risk Assessment Forum: Washington, DC, USA, 2005.
- Middleton, D.R.S.; Watts, M.J.; Beriro, D.J.; Hamilton, E.M.; Leonardi, G.S.; Fletcher, T.; Close, R.M.; Polya, D.A. Arsenic in residential soil and household dust in Cornwall, south west England: Potential human exposure and the influence of historical mining. Environ. Sci. Process. Impacts 2017, 19, 517–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhns, H.; Etyemezian, V.; Green, M.; Hendricson, K.; Gown, M.; Barton, K.; Pitchford, M. Vehicle-based road dust emission measurement–Part II: Effect of precipitation, wintertime road sanding and street sweepers on inferred PM10 emission potential from paved and unpaved roads. Atmos. Environ. 2003, 37, 4573–4582. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Castanedo, Y.G.; de la Campa, A.S.; Pandolfi, M.; Lozano, A.; Gonzalez, J.C.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in Southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive road dust PM2.5 emissions and their potential health impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar]
- Witt, E.C.; Wronkiewicz, D.J.; Shi, H. Preliminary assessment of an economical fugitive road dust sampler for the collection of bulk samples for geochemical analysis. J. Environ. Qual. 2013, 42, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, F.; Karanasiou, A.; Cordoba, P.; Alastuey, A.; Moreno, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; Querol, X. Effects of road dust suppressants on PM levels in a Mediterranean urban area. Environ. Sci. Technol. 2014, 48, 8069–8077. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 42, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Beig, G.; Pakhi, N. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010. Atmos. Environ. 2011, 45, 6180–6190. [Google Scholar] [CrossRef]
- Pereira, G.; Teinila, K.; Custodio, D.; Santos, A.G.; Xian, H.; Hillamo, R.; Alves, C.; de Andrade, J.B.; da Rocha, G.O.; Kumar, P.; et al. Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment. Atmos. Chem. Phys. 2017, 17, 11943–11969. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Schaap, M.; Reche, C.; Querol, X. Road traffic: A major source of particulate matter in Europe. Handb. Environ. Chem. 2013, 26, 165–193. [Google Scholar]
- MOE (Ministry of Environment). A Study on Atmospheric Emission Inventory Development, and the Estimation of Air Pollutant Emission Factors and Quantity. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201100002903 (accessed on 18 September 2021).
- Souto-Oliveira, C.E.; Babinski, M.; Araujo, D.F.; Weiss, D.J.; Ruiz, I.R. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities. Atmos. Environ. 2019, 198, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Thapalia, A.; Borrok, D.M.; Van Metre, P.C.; Musgrove, M.; Landa, E.R. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake. Environ. Sci. Technol. 2010, 44, 1544–1550. [Google Scholar] [CrossRef]
- Fekiacova, Z.; Cornu, S.; Pichat, S. Tracing contamination sources in soils with Cu and Zn isotopic ratios. Sci. Total Environ. 2015, 517, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Sipkova, A.; Chrastny, V.; Stepanova, M.; Voldrichova, P.; Veselovsky, F.; Prechova, E.; Blaha, V.; Curik, J.; Farkas, J.; et al. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime. Environ. Pollut. 2016, 218, 1135–1146. [Google Scholar] [CrossRef]
- Gioia, S.; Weiss, D.; Coles, B.; Arnold, T.; Babinski, M. Accurate and precise zinc isotope ratio measurements in urban aerosols. Anal. Chem. 2008, 80, 9776–9780. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gao, T.; Liu, Y.; Wang, Z.; Liu, C.; Wu, Q.; Qi, M.; Lv, Y.; Li, F. Zinc isotope revealing zinc’s sources and transport processes in karst region. Sci. Total Environ. 2020, 724, 138191. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.; Kang, S.; Luo, C.; Li, Q.; Huang, J.; Gao, S.; Li, X. Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmos. Environ. 2011, 45, 6210–6215. [Google Scholar] [CrossRef]
- Resongles, E.; Dietze, V.; Green, D.C.; Harrison, R.M.; Ochoa-Gonzalez, R.; Tremper, A.H.; Weiss, D.J. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today. Proc. Natl. Acad. Sci. USA 2021, 118, e2102791118. [Google Scholar] [CrossRef]
- Wu, P.C.; Huang, K.F. Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Sci. Rep. 2021, 11, 7593. [Google Scholar]
- Souto-Oliveira, C.E.; Babinski, M.; Araújo, D.F.; Andrade, M.F. Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Sci. Total Environ. 2018, 626, 1350–1366. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, N.J.; Dong, S.; Packman, H.; Little, S.H.; Gonzalez, R.O.; Najorka, J.; Sun, Y.; Weiss, D.J. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols. Front. Earth Sci. 2020, 8, 167. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Lim, J.S.; Shim, W.J.; Kim, Y.O.; Ra, K. Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Mar. Pollut. Bull. 2020, 161, 111717. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta. 1964, 8, 1273–1285. [Google Scholar] [CrossRef]
- Qingjie, G.; Jun, D.; Yunchuan, X.; Qingfei, W.; Ligiang, Y. Calculation pollution indices by heavy metals in ecological geochemistry assessment and a cast study in parks of Beijing. J. China Univ. Geo. 2008, 19, 230–241. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust; Rudnick, R.L., Ed.; The Crust, Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar]
- Xu, Z.Q.; Ni, S.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metal’s toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610–611, 167–174. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund Vol. 1 Human Health Evaluation Manual, Part E, Supplemental Guidance from Dermal Risk Assessment; Office of Emergency and Remedial Response: Washington, DC, USA, 2004.
- USEPA (US Environmental Protection Agency). Exposure Factors Handbook (Final). Available online: https://www.nrc.gov/docs/ML1400/ML14007A666.pdf (accessed on 18 September 2021).
- Adamiec, E.; Jarosz-Krzemińska, E. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 2019, 9, 16364. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Abuduwaili, J.; Liu, W. Spatial distribution and health risk assessment of potentially toxic elements in surface soil of Boston Lake Basin, Central Asia. Int. J. Environ. Res. Public Health 2019, 16, 3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Road-deposited sediment pollutants: A critical review of their characteristics, source apportionment, and management. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1315–1348. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszala, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Li, C. Street dust heavy metal pollution source apportionment and sustainable management in a typical city-Shijiazhung, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. [Google Scholar] [CrossRef] [Green Version]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emission, human health risk, ecotoxicology, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Victoria, A.; Cobbina, S.J.; Dampare, S.B.; Duwiejuah, A.B. Heavy metals concentration in road dust in the Bolgatanga Municipality, Ghana. J. Environ. Poll. Human Health 2014, 2, 74–80. [Google Scholar]
- Zafra-Mejia, C.; Cutierrez-Malaxechebarria, A.; Hernandez-Pena, Y. Correlation between vehicular traffic and heavy metal concentrations in road sediments of Bogota, Colombia. Rev. Fac. Med. 2019, 67, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Padoan, E.; Rome, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef]
- Bi, X.Y.; Liang, S.Y.; Li, X.D. Trace metals in soil, dust, and tree leaves of the urban environment, Guangzhou, China. Chin. Sci. Bull. 2013, 58, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Levesque, C.; Wiseman, C.L.S.; Beauchemin, S.; Rasmussen, P.E. Thoracic fraction (PM10) of resuspended urban dust: Geochemistry, particle size distribution and lung bioaccessibility. Geosciences 2021, 11, 87. [Google Scholar]
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gomez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacity. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Daigo, L.; Matsuno, Y.; Adachi, Y. Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan. Resour. Conserv. Recycl. 2010, 54, 851–863. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wang, Z.; Wang, L.; Liu, J.; Jiang, W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 2010, 356, 4350–4356. [Google Scholar] [CrossRef]
- Wang, X.; Wallinder, I.O.; Hedberg, Y. Bioaccessibility of nickel and cobalt released from occupationally relevant alloy and metal powders at simulated human exposure scenarios. Ann. Work. Expo. Health 2020, 64, 659–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MGL (Ministry of Government Legislation). Korea Soil Quality Standard of Heavy Metals in Soil Environment Conservation Act (Law No. In 16613). Available online: https://www.law.go.kr/ (accessed on 18 September 2021).
- Jeong, H.; Choi, J.Y.; Ra, K. Characteristics of heavy metal pollution in road dust from urban areas: Comparison by land use types. J. Environ. Anal. Health Toxicol. 2020, 23, 101–111. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ. Sci. Technol. 2008, 42, 2937–2942. [Google Scholar] [CrossRef]
- Ondracek, J.; Schwarz, J.; Zdimal, V.; Andelova, L.; Vodicka, P.; Bizek, V.; Tsai, C.J.; Chen, S.C.; Smolik, J. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmos. Environ. 2011, 45, 5090–5100. [Google Scholar] [CrossRef]
- Chapa-Martínez, C.A.; Hinojosa-Reyes, L.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.; Maya-Treviño, L.; Guzmán-Mar, J.L. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water. Sci. Total Environ. 2016, 565, 511–518. [Google Scholar] [CrossRef]
- Dousova, B.; Lhotka, M.; Buzek, F.; Cejkova, B.; Jackova, I.; Bednar, V.; Hajek, P. Environmental interaction of antimony and arsenic near busy traffic nodes. Sci. Total Environ. 2020, 702, 134642. [Google Scholar] [CrossRef] [PubMed]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dust for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Langner, M.; Kull, M.; Endlicher, W.R. Determination of PM10 deposition based on antimony flux to selected urban surfaces. Environ. Pollut. 2011, 159, 2028–2034. [Google Scholar]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Figi, R.; Richard, A.; Furger, M.; Rickers, K.; Falkenberg, G.; Zhao, Y.; Cliff, S.S.; et al. Real-world emission factors for antimony and other brake wear related trace elements: Size-segregated values for light and heavy duty vehicles. Environ. Sci. Technol. 2009, 8072–8078. [Google Scholar] [CrossRef]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J. Brake wear particulate matter emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, J.; Choi, J.Y.; Kim, K.T.; Kim, E.S.; Sun, C.; Park, J.K.; Ra, K. Study on dissolved and particulate heavy metals in stream water and stormwater runoff from Suyeong watershed in Busan special management area, Korea. J. Korean Soc. Mar. Environ. Energy 2019, 22, 203–214. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Heavy metal pollution assessment in stream sediments from urban and different types of industrial areas in South Korea. Soil. Sediment Contam. 2021, 30, 804–818. [Google Scholar] [CrossRef]
- Tanner, P.A.; Hoi-Ling, M.; Yu, P.K.N. Fingerprinting metals in street dust in Beijing, Shanghai and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef] [PubMed]
- Bukowiecki, N.; Gehrig, R.; Lienemann, P.; Hill, M.; Figi, R.; Buchmann, B.; Furger, M.; Richard, A.; Mohr, C.; Weimer, S.; et al. PM10 Emission Factors of Abrasion Particles from Road Traffic (APART); Swiss Association of Road and Transportation Experts (VSS): Zurich, Switzerland, 2009. [Google Scholar]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atoms. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Song, F.; Gao, Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area. Atmos. Environ. 2011, 45, 6714–6723. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjodin, A.; Andreasson, K. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensberger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Hwang, H.M.; Fiala, M.J.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarra, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Sjodin, A.; Ferm, M.; Bjokr, A.; Rahmberg, M.; Gudmundsson, A.; Swietlicki, E.; Johansson, C.; Gustafsson, M.; Blomqvist, G. Wear Particles from Road Traffic: A Field, Laboratory and Modelling Study; IVL Swedish Environmental Research Institute Ltd.: Göteborg, Sweden, 2010. [Google Scholar]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic Related Emissions. Brake and Tyre Wear PM. Literature Survey. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC89231 (accessed on 18 September 2021).
- Panko, J.M.; Kreider, M.; Unice, K.M. Review of Tire Wear Emissions. In A review of Tire Emission Measurement Studies: Identification of Gaps and Future Needs. Nonexhaust Emissions: An Urban Air Quality Problem for Public Health; Impact and Mitigation Measures 2018; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tonegawa, Y.; Sasaki, S. Development of tire-wear particles emission measurements for passenger vehicles. Emiss. Contr. Sci. Technol. 2021, 7, 56–62. [Google Scholar] [CrossRef]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne brake wear debris: Size distribution, comparison, and a comparison of dynamometer and vehicle tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, M.; Mantecca, P.; Cetta, F.; Camatini, M. Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549. Environ. Int. 2008, 34, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Gonzalez, R.O.; Harrison, R.M.; Green, D.; North, R.; Fowler, F.; Weiss, D. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmos. Environ. 2017, 165, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Sugden, C.L.; Farmer, J.G.; MacKenzie, A.B. Isotopic ratios of lead in contemporary environmental material from Scotland. Environ. Geochem. Health 1993, 15, 59–65. [Google Scholar] [CrossRef]
- LeGalley, E.; Widom, E.; Krekeler, M.P.S.; Kuentz, D.C. Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio. Appl. Geochem. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- O’Shea, M.J.; Krekeler, M.P.S.; Vann, D.R.; Gieré, R. Investigation of Pb-contaminated soil and road dust in a polluted area of Philadelphia. Environ. Monit. Assess. 2021, 193, 440. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A. Relative bioaccessibility of Pb-based paint in soil. Environ. Geochem. Health 2016, 38, 1037–1050. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ye, J.; Zhang, Y.; Ok, Y.S.; Song, Y.; Coulon, F.; Peng, T.; Tian, L. Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environ. Int. 2018, 121, 85–101. [Google Scholar] [PubMed]
- Jeong, H.; Ra, K. Multi-isotope signatures (Cu, Zn, Pb) of different particle sizes in road-deposited sediments: A case study from industrial area. J. Anal. Sci. Technol. 2021, 12, 39. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Z.; Zhou, J.; Che, H.; Tian, M.; Wang, H.; Shi, G.; Yang, F.; Zhang, S.; Chen, Y. PM2.5-bound heavy metals in Southwestern China: Characterization, sources, and health risks. Atmosphere 2021, 12, 929. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.Y.; Park, J.; Yeon, S.H.; Shin, S.; Choi, J. Assessment of pollution sources and contribution in urban dust using metal concentrations and multi-isotope ratios (13C, 207/206Pb) in a complex industrial port area, Korea. Atmosphere 2021, 12, 840. [Google Scholar] [CrossRef]
- Souto-Oliveira, C.E.; Kamigauti, L.Y.; Andrade, M.F.; Babinski, M. Improving source apportionment of urban aerosols using multi-isotopic fingerprints (MIF) and positive matrix factorization (PMF): Cross-validation and new insights. Front. Environ. Sci. 2021, 9, 623915. [Google Scholar] [CrossRef]
Cr | Co | Ni | Cu | Zn | As | Cd | Sb | Pb | Hg | Sample Size |
---|---|---|---|---|---|---|---|---|---|---|
300 | 19.8 | 75.6 | 513 | 3007 | 17.0 | 5.6 | 61.6 | 480 | 0.6 | <10 μm (this study) |
182 | - | 109 | 287 | 1829 | - | 0.9 | - | 456 | - | <20 μm 1 |
373 | - | 296 | 333 | 819 | - | 2 | 29 | 233 | - | 2.5~10 μm 2 |
196 | 26 | 121 | 550 | 2038 | - | 3.7 | 85 | 234 | - | <20 μm 3 |
75.5 | 113 | 591 | 0.6 | 112 | <44 μm 4 | |||||
176 | 8.87 | 48.3 | 376 | 1150 | 406 | <50 μm 5 | ||||
576 | 28.9 | 2945 | 33.5 | 1.8~10 μm 6 | ||||||
822 | 1000 | 5.4 | 3.4 | 11 | 313 | <37 μm 7 | ||||
53.8 | 9.3 | 34.2 | 100 | 302 | 17.0 | 0.6 | 48.8 | <10 μm 8 | ||
34 | 270 | 470 | 1.9 | 148 | <2 μm 9 | |||||
68 | 15 | 46 | 184 | 1026 | 0.8 | 12 | 91 | <10 μm 10 |
Adult | Children | |||||||
---|---|---|---|---|---|---|---|---|
Metals | HQing | HQinh | HQderm | HI | HQing | HQinh | HQderm | HI |
Cr | 3.5 × 10−2 | 2.8 × 10−3 | 4.0 × 10−2 | 7.8 × 10−2 | 3.3 × 10−1 | 2.6 × 10−2 | 9.2 × 10−2 | 4.5 × 10−1 |
Ni | 1.3 × 10−3 | 1.0 × 10−6 | 1.1 × 10−4 | 1.4 × 10−3 | 1.2 × 10−2 | 9.4 × 10−6 | 2.6 × 10−4 | 1.3 × 10−2 |
Co | 3.5 × 10−4 | 9.3 × 10−4 | 9.9 × 10−6 | 1.3 × 10−3 | 3.3 × 10−3 | 8.7 × 10−3 | 2.3 × 10−5 | 1.2 × 10−2 |
Cu | 4.5 × 10−3 | 3.4 × 10−6 | 3.4 × 10−4 | 4.9 × 10−3 | 4.2 × 10−2 | 3.2 × 10−5 | 7.9 × 10−4 | 4.3 × 10−2 |
Zn | 3.5 × 10−3 | 2.7 × 10−6 | 4.0 × 10−4 | 3.9 × 10−3 | 3.3 × 10−2 | 2.5 × 10−5 | 9.2 × 10−4 | 3.4 × 10−2 |
As | 2.0 × 10−2 | 1.5 × 10−5 | 1.1 × 10−3 | 2.1 × 10−2 | 1.9 × 10−1 | 1.4 × 10−4 | 2.5 × 10−3 | 1.9 × 10−1 |
Cd | 2.0 × 10−3 | 1.5 × 10−6 | 4.5 × 10−3 | 6.5 × 10−3 | 1.8 × 10−1 | 1.4 × 10−5 | 1.0 × 10−2 | 2.9 × 10−2 |
Sb | 5.4 × 10−2 | 4.1 × 10−5 | 6.2 × 10−2 | 1.2 × 10−1 | 5.1 × 10−1 | 3.8 × 10−4 | 1.4 × 10−1 | 6.5 × 10−1 |
Pb | 4.8 × 10−2 | 3.7 × 10−5 | 7.3 × 10−3 | 5.6 × 10−2 | 4.5 × 10−1 | 3.4 × 10−4 | 1.7 × 10−2 | 4.7 × 10−1 |
Hg | 7.2 × 10−4 | 5.5 × 10−7 | 2.3 × 10−4 | 9.5 × 10−4 | 6.7 × 10−3 | 5.1 × 10−6 | 5.4 × 10−4 | 7.2 × 10−3 |
Sum | 1.7 × 10−1 | 3.8 × 10−3 | 1.2 × 10−1 | 2.9 × 10−1 | 1.6 | 3.6 × 10−2 | 2.7 × 10−1 | 1.9 |
Cr | Co | Ni | Cu | Zn | As | Cd | Sb | Pb | Hg | |
---|---|---|---|---|---|---|---|---|---|---|
Cr | - | |||||||||
Co | 0.615 | - | ||||||||
Ni | 0.925 | 0.672 | - | |||||||
Cu | 0.415 | 0.304 | 0.348 | - | ||||||
Zn | 0.315 | 0.370 | 0.371 | 0.703 | - | |||||
As | 0.031 | 0.129 | 0.060 | 0.139 | 0.107 | - | ||||
Cd | 0.094 | 0.210 | 0.082 | 0.511 | 0.798 | 0.143 | - | |||
Sb | 0.02 | −0.023 | −0.108 | 0.589 | 0.457 | 0.411 | 0.498 | - | ||
Pb | 0.243 | 0.275 | 0.244 | 0.616 | 0.679 | 0.642 | 0.582 | 0.644 | - | |
Hg | −0.127 | −0.189 | −0.170 | −0.010 | 0.058 | −0.215 | 0.022 | 0.104 | −0.449 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Ra, K. Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. Atmosphere 2021, 12, 1229. https://doi.org/10.3390/atmos12091229
Jeong H, Ra K. Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. Atmosphere. 2021; 12(9):1229. https://doi.org/10.3390/atmos12091229
Chicago/Turabian StyleJeong, Hyeryeong, and Kongtae Ra. 2021. "Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea" Atmosphere 12, no. 9: 1229. https://doi.org/10.3390/atmos12091229
APA StyleJeong, H., & Ra, K. (2021). Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. Atmosphere, 12(9), 1229. https://doi.org/10.3390/atmos12091229