Mapping Atmospheric Mercury in Lampung Province, Indonesia Using Bark of Multipurpose Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Sampling Method
2.3. Sample Preparation
2.3.1. Atomic Absorption Spectroscopy Analysis
2.3.2. Scanning Electron Microscopy Analysis
2.4. THg Calculation
2.5. Statistical Analysis
3. Results
MPTS Plants and Mercury Content in the Measured Tree Barks
4. Discussion
4.1. Bark and Mercury Contamination
4.2. Correlation of THg to Distance and Elevation
4.3. Spatial Distribution of the Atmospheric THg and Wind Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mallongi, A.; Limbong, E.; Naiem, F.; Ishak, H.; Basri, S.; Saleh, M.; Syam, A.; Asrul, L. Health risk analysis of exposure to mercury (Hg) and cyanide (CN) in Kayeli village communities Teluk Kayeli district Buru regency. Enferm. Clin. 2020, 30, 427–430. [Google Scholar] [CrossRef]
- Putri, G.E.; Fitri, W.E.; Roza, S.H. Kajian Kualitas Air Limbah Penambangan Emas Sebagai Akibat Penambangan Emas Tanpa Izin (Peti). J. Kesehat. Med. Saintika 2016, 7, 1–11. [Google Scholar]
- Ayuningtyas, V.K.; Tahir, M.; Same, M. Pengaruh Waktu Perendaman dan Konsentrasi Giberelin (GA3) pada Pertumbuhan Benih Cemara Laut (Casuarina equisetifolia L.). J. Agro Ind. Perkeb. 2017, 5, 29–38. [Google Scholar] [CrossRef]
- Fitriyani, A.; Riniarti, M.; Duryat, D. Inventarisasi Hasil Hutan Bukan Kayu Pada Tanaman Mpts Di Hutan Desa Sukaraja Kph Rajabasa. Gorontalo J. For. Res. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef]
- WHO. Chapter 6.9 mercury general description. In Air Quality Guidelines; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; pp. 1–15. [Google Scholar]
- Gyamfi, O.; Sorenson, P.B.; Darko, G.; Ansah, E.; Bak, J.L. Human health risk assessment of exposure to indoor mercury vapour in a Ghanaian artisanal small-scale gold mining community. Chemosphere 2020, 241, 125014. [Google Scholar] [CrossRef]
- Risher, J.F. Concise International Chemical Assessment Document 50: Elemental mercurcy and inorganic mercury compounds: Human health aspects. IPCS Concise Int. Chem. Assess. Doc. 2003, 50, 1–61. [Google Scholar]
- Yang, Y.; Yanai, R.D.; Driscoll, C.T.; Montesdeoca, M.; Smith, K.T. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLoS ONE 2018, 13, e0196293. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Benvenuti, M.; Beutel, M.W.; Costagliola, P.; Gonnelli, C.; Lattanzi, P.; Paolieri, M. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci. Total Environ. 2016, 569–570, 105–113. [Google Scholar] [CrossRef]
- Prasetia, H.; Sakakibara, M.; Omori, K.; Laird, J.S.; Sera, K.; Kurniawan, I.A. Mangifera indica as bioindicator of mercury atmospheric contamination in an ASGM area in north gorontalo regency, Indonesia. Geosciences 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Rompalski, P.; Smoliński, A.; Krztoń, H.; Gazdowicz, J.; Howaniec, N.; Róg, L. Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arab. J. Chem. 2016, 12, 3927–3942. [Google Scholar] [CrossRef] [Green Version]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Viso, S.; Rivera, S.; Martinez-Coronado, A.; Esbrí, J.M.; Moreno, M.M.; Higueras, P. Biomonitoring of hg0, hg2+ and particulate hg in a mining context using tree barks. Int. J. Environ. Res. Public Health 2021, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Prasetia, H.; Sakakibara, M.; Sera, K. Preliminary Study of Atmospheric Mercury Contamination Assessment Using Tree Bark in an ASGM Area in North Gorontalo Regency, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 536, 012007. [Google Scholar] [CrossRef]
- Suardi, S. Pengaruh Kepuasan Kerja Terhadap Kinerja Pegawai Pada Pt Bank Mandiri, Tbk Kantor Cabang Pontianak. Bus. Econ. Entrep. 2019, 1, 9–19. [Google Scholar] [CrossRef]
- Usmadi, U. Pengujian Persyaratan Analisis (Uji Homogenitas dan Uji Normalitas). Inov. Pendidik. 2020, 7, 50–62. [Google Scholar]
- Hartati, A.; Wuryandari, T.; Wilandari, Y. Analisis varian dua faktor dalam rancangan pengamatan berulang (repeated measures). J. Gaussian 2013, 2, 279–288. [Google Scholar]
- Nuryadi, N.; Astuti, T.D.; Sri Utami, E.; Budiantara, M. Dasar-Dasar Statistika Penelitian; Sibuku Media: Yogyakarta, Indonesia, 2017. [Google Scholar]
- Indonesia, S.N. Batas Maksimum Cemaran Logam Berat Dalam Pangan. SNI 7387:2009. 2009, Volume 17. Available online: https://sertifikasibbia.com/upload/logam_berat.pdf (accessed on 20 December 2020).
- Ihalauw, M.I.; Rahmadaniarti, A.; Panambe, N. Kontribusi Agroforestri Herbal Terhadap Penerimaan Tunai Masyarakat Lokal Di Sekitar Manokwari Utara (Studi Kasus Di Kampung Bremi, Nyoom I, Dan Lebau). J. Kehutan. Papuasia 2020, 6, 133–140. [Google Scholar] [CrossRef]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Tamarindus indica Fabaceae—Caesalpinioideae Tamarindus indica. In Agroforestree Database; World Agroforestry Centre: Nairobi, Kenya, 2009; pp. 1–6. [Google Scholar]
- Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The utilization of tree bark. BioResources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Lattanzi, P.; Paolieri, M.; Rimondi, V. Tree Barks as Environmental Biomonitors of Metals—The Example of Mercury. Adv. Environ. Pollut. Res. 2017, 2017, 11–18. [Google Scholar] [CrossRef]
- Ross, I.A. Annona muricata L. Med. Plants World 2003, 1, 133–142. [Google Scholar] [CrossRef]
- Salempa, P.; Muharram, M.; Dini, I. Toksisitas Ekstrak Metanol Kulit Batang Tumbuhan Sirsak (Annona muricata Linn) terhadap Artemia salina. J. Chem. 2015, 16, 56–60. [Google Scholar]
- Pertiwi, W.; Arisanty, D.; Linosefa, L. Pengaruh Ekstrak Daun Sirsak (Annona muricata lin) Terhadap Viabilitas Cell Line Kanker Payudara T47D Secara In Vitro. J. Kesehat. Andalas 2020, 9, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Pinontoan, S.P.M.; Contra, A.J.; Kabuhung, A.; Analis, J.; Poltekkes, K.; Manado, K. Gambaran Kadar Merkuri Pada Rambut Pekerja Tambang Dipertambangan Emas Tanpa Izin (Peti) Desa Tatelu Kecamatan Dimembe. KESMAS 2019, 7, 30–40. [Google Scholar]
- UNEP DTIE Chemicals Branch; WHO Department of Food Safety, Zoonoses and Foodborne Diseases. Guidance for Identifying Populations at Risk From Mercury Exposure; World Health Organization: Geneva, Switzerland, 2008; p. 176. Available online: https://wedocs.unep.org/.../IdentifyingPopnatRiskExposuretoMercury_2008Web.pdf (accessed on 10 June 2020).
- Hanson, P.J.; Tabberer, T.A.; Lindberg, S.E. Emissions of Mercury Vapor From Tree Bark. Atmos. Environ. 1997, 31, 777–780. [Google Scholar] [CrossRef]
- Rykowska, I.; Wasiak, W. Bioconcentration of mercury and heavy metals by the bark of maple-leaf plane tree. Ecol. Chem. Eng. S 2011, 18, 233–241. [Google Scholar]
- European Commission. Science for Environment Policy (2017) Tackling mercury Pollution in the EU and Worldwide; In-depth Report 15 produced for the European Commission, DG Environment by the Science Communication Unit; UWE: Bristol, UK, 2017. [Google Scholar]
- Banic, C.M.; Beauchamp, S.T.; Tordon, R.J.; Schroeder, W.H.; Steffen, A.; Anlauf, K.A.; Wong, H.K.T. Vertical distribution of gaseous elemental mercury in Canada. J. Geophys. Res. Atmos. 2003, 108, D9. [Google Scholar] [CrossRef]
- Floreani, F.; Barago, N.; Acquavita, A.; Covelli, S.; Skert, N.; Higueras, P. Spatial distribution and biomonitoring of atmospheric mercury concentrations over a contaminated coastal lagoon (Northern Adriatic, Italy). Atmosphere 2020, 11, 1280. [Google Scholar] [CrossRef]
No | Scientific Name | Surface Dimension (cm2) | Hg Concentration (mg/g-DW *) | Distance (m) | Elevation (m) | THg (µg DW *) |
---|---|---|---|---|---|---|
1 | P. americana 1 | 15.2 | 0.26 | 510 | 268 | 15.2 |
2 | P. americana 2 | 14.5 | 0.57 | 413 | 267 | 58.7 |
Mean | 14.8 | 0.41 | 461 | 267 | 36.9 | |
3 | T. indica 1 | 15.5 | 0.79 | 418 | 270 | 40.6 |
4 | T. indica 2 | 17.2 | 0.85 | 240 | 122 | 74.4 |
Mean | 16.3 | 0.82 | 329 | 196 | 57.5 | |
5 | L. domesticum 1 | 18.8 | 0.36 | 416 | 270 | 7.7 |
6 | L. domesticum 2 | 15 | 0.35 | 120 | 268 | 18.5 |
Mean | 16.9 | 0.36 | 268 | 269 | 13.1 | |
7 | D. zibethinus 1 | 20.5 | 0.15 | 1500 | 137 | 6.76 |
8 | D. zibethinus 2 | 19.3 | 0.06 | 820 | 280 | 2.17 |
9 | D. zibethinus 3 | 16.8 | 0.02 | 425 | 272 | 0.81 |
10 | D. zibethinus 4 | 18.1 | 0.04 | 1073 | 276 | 2.44 |
11 | D. zibethinus 5 | 18.9 | 0.08 | 570 | 271 | 4.38 |
12 | D. zibethinus 6 | 14.3 | 0.04 | 730 | 275 | 2.58 |
13 | D. zibethinus 7 | 13.1 | 0.07 | 950 | 274 | 4.34 |
14 | D. zibethinus 8 | 16.5 | 0.07 | 105 | 268 | 5.25 |
15 | D. zibethinus 9 | 13.1 | 0.3 | 610 | 261 | 20.9 |
16 | D. zibethinus 10 | 14.4 | 0.55 | 700 | 276 | 26.7 |
Mean | 16.5 | 0.14 | 748 | 259 | 7.63 | |
17 | S. dulcis 1 | 18.4 | 0.33 | 389 | 270 | 7.12 |
Mean | 18.4 | 0.33 | 389 | 270 | 7.12 | |
18 | G. gnemon 1 | 14.6 | 1.17 | 370 | 274 | 40 |
19 | G. gnemon 2 | 18.4 | 0.38 | 163 | 269 | 8.33 |
Mean | 16.5 | 0.78 | 266 | 271 | 24.2 | |
20 | A. heterophyllus 1 | 16.8 | 0.19 | 465 | 273 | 8.02 |
21 | A. heterophyllus 2 | 18.6 | 0.19 | 410 | 269 | 8.25 |
22 | A. heterophyllus 3 | 14.3 | 0.26 | 684 | 258 | 7.12 |
Mean | 16.6 | 0.21 | 519 | 266 | 7.80 | |
23 | P. speciosa 1 | 16.1 | 0.34 | 520 | 275 | 19 |
24 | P. speciosa 2 | 14.6 | 0.46 | 244 | 284 | 25.1 |
Mean | 15.3 | 0.40 | 382 | 279 | 22.0 | |
25 | L. leucochepala 1 | 17.6 | 0.03 | 1250 | 277 | 1.06 |
26 | L. leucochepala 2 | 16.4 | 0.3 | 435 | 271 | 10.9 |
Mean | 17.0 | 0.17 | 842 | 274 | 5.98 | |
27 | A. muricata 1 | 17.6 | 0.53 | 385 | 271 | 30 |
28 | A. muricata 2 | 12.6 | 0.62 | 115 | 120 | 44.2 |
Mean | 15.10 | 0.58 | 250 | 195 | 37.1 |
No. | Scientific Name | Surface Dimension (cm2) | Hg Concentration (mg/g) DW * | THg (µg DW) |
---|---|---|---|---|
1 | T. indica | 17.7 | 0.0002 | 0.03 |
2 | T. indica | 16.9 | 0.0002 | 0.02 |
3 | T. indica | 17.4 | 0.0002 | 0.02 |
4 | S. aqueum | 17.3 | 0.0002 | 0.03 |
5 | S. aqueum | 20.0 | 0.0002 | 0.02 |
6 | S. aqueum | 19.9 | 0.0002 | 0.03 |
7 | S. aqueum | 14.8 | 0.0002 | 0.04 |
8 | M. indica | 15.2 | 0.007 | 1.42 |
9 | M. indica | 14.9 | 0.023 | 2.32 |
10 | M. indica | 16.0 | 0.011 | 1.51 |
11 | M. indica | 15.5 | 0.0002 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendra, T.; Riniarti, M.; Yuwono, S.B.; Prasetia, H.; Widiastuti, E.L.; Bakri, S.; Taufiq, A. Mapping Atmospheric Mercury in Lampung Province, Indonesia Using Bark of Multipurpose Tree Species. Atmosphere 2022, 13, 2. https://doi.org/10.3390/atmos13010002
Rendra T, Riniarti M, Yuwono SB, Prasetia H, Widiastuti EL, Bakri S, Taufiq A. Mapping Atmospheric Mercury in Lampung Province, Indonesia Using Bark of Multipurpose Tree Species. Atmosphere. 2022; 13(1):2. https://doi.org/10.3390/atmos13010002
Chicago/Turabian StyleRendra, Tedy, Melya Riniarti, Slamet Budi Yuwono, Hendra Prasetia, Endang Linirin Widiastuti, Samsul Bakri, and Azhary Taufiq. 2022. "Mapping Atmospheric Mercury in Lampung Province, Indonesia Using Bark of Multipurpose Tree Species" Atmosphere 13, no. 1: 2. https://doi.org/10.3390/atmos13010002
APA StyleRendra, T., Riniarti, M., Yuwono, S. B., Prasetia, H., Widiastuti, E. L., Bakri, S., & Taufiq, A. (2022). Mapping Atmospheric Mercury in Lampung Province, Indonesia Using Bark of Multipurpose Tree Species. Atmosphere, 13(1), 2. https://doi.org/10.3390/atmos13010002