Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs
Abstract
:1. Introduction
2. Study Site
3. Data and Methods
3.1. Survey Data
3.2. Topographic Parameters
3.3. Interpolation Methods
3.4. Standardized Snow Depth Distribution
3.5. Climatological Snow Distribution Pattern Uncertainty
3.6. SNOTEL Data and Winter Season Index
4. Results
4.1. Snow Survey Data
4.2. Selection of Model
4.3. Standardized Snow Depth and Pattern Repeatability
4.4. Winter Season Index
4.5. Simulated Snow Depth
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Topographic Parameters
Appendix A.1. Elevation
Appendix A.2. Slope
Appendix A.3. Aspect
Appendix A.4. Northness
Appendix A.5. Solar Radiation
Appendix A.6. Ponding
Appendix A.7. Maximum Upslope Wind
Appendix B. Interpolation Models
Appendix B.1. Binary Regression Tree
Appendix B.2. Multiple Linear Regression
Appendix B.3. Generalized Additive Model
References
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. How Does Snow Persistence Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet Maritime and Dry Continental Climates? Water Resour. Res. 2018, 54, 2605–2623. [Google Scholar] [CrossRef]
- McKay, G.A.; Gray, D.M. The Distribution of the Snow Cover. In Handbook of Snow: Principles Processes, Management and Use; Gray, D.M., Hale, D., Eds.; Pergamon Press: Willowdale, ON, Canada, 1981; pp. 153–190. [Google Scholar]
- Elder, K.; Dozier, J.; Michaelsen, J. Snow accumulation and distribution in an Alpine Watershed. Water Resour. Res. 1991, 27, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Cline, D.; Pomeroy, J.W.; Gray, D.M. Snowcover Accumulation, Relocation and Management. Arct. Alp. Res. 1998, 30, 314. [Google Scholar] [CrossRef]
- Molotch, N.P.; Colee, M.T.; Bales, R.C.; Dozier, J. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: The impact of digital elevation data and independent variable selection. Hydrol. Process. 2005, 19, 1459–1479. [Google Scholar] [CrossRef]
- Elder, K.; Cline, D.; Liston, G.E.; Armstrong, R. NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture. J. Hydrometeorol. 2009, 10, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Brown, K.S.J.; Blumberg, E.J.; López-Moreno, J.I.; Covino, T.P.; Kappas, M.; Huang, Y.; Leone, V.; Kashipazha, A.H. Distribution of snow depth variability. Front. Earth Sci. 2018, 12, 683–692. [Google Scholar] [CrossRef]
- Mott, R.; Vionnet, V.; Grünewald, T. The Seasonal Snow Cover Dynamics: Review on Wind-Driven Coupling Processes. Front. Earth Sci. 2018, 6, 1–25. [Google Scholar] [CrossRef]
- Elder, K.; Dozier, J. Improving Methods for Measurement and Estimation of Snow Storage in an Alpine Watershed; IAHS Publication: Wallingford, UK, 1990; Volume 193, pp. 147–156. [Google Scholar]
- Pflug, J.M.; Lundquist, J.D. Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resour. Res. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Meiman, J.R. Snow accumulation related to elevation, aspect, and forest canopy. In Proceedings of the Snow Hydrology Workshop Seminar, Fredericton, NB, Canada, 28–29 February 1968; pp. 35–47. [Google Scholar]
- Elder, K.; Rosenthal, W.; Davis, R. Estimating the spatial distribution of snow water equivalent in a montane watershed. Hydrol. Process. 1998, 12, 1793–1808. [Google Scholar] [CrossRef]
- Erxleben, J.; Elder, K.; Davis, R. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol. Process. 2002, 16, 3627–3649. [Google Scholar] [CrossRef]
- Winstral, A.; Elder, K.; Davis, R.E. Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters. J. Hydrometeorol. 2002, 3, 524–538. [Google Scholar] [CrossRef]
- Erickson, T.A.; Williams, M.W.; Winstral, A. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Wagner, A.M. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resour. Res. 2010, 46, 12549. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, J.L.; De Luco, D.F.; Garcia-Gonzalez, R.; García-Serrano, A.; Herrero, J. Primera Reunión sobre el rebeco cantábrico y el sarrio pirenaico. Benasque (Huesca, España), 20–22 de mayo de 2011. Pirineos 2011, 166, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, T.; Stötter, J.; Pomeroy, J.W.; Dadic, R.; Baños, I.M.; Marturià, J.; Spross, M.; Hopkinson, C.; Burlando, P.; Lehning, M. Statistical modelling of the snow depth distribution in open alpine terrain. Hydrol. Earth Syst. Sci. 2013, 17, 3005–3021. [Google Scholar] [CrossRef] [Green Version]
- Revuelto, J.; López-Moreno, J.I.; Azorin-Molina, C.; Vicente-Serrano, S.M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 2014, 8, 1989–2006. [Google Scholar] [CrossRef] [Green Version]
- Grayson, R.B.; Bloschl, G.; Western, A.W.; McMahon, T.A. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Deitemeyer, D.C.; Venable, N.B.H. Capitalizing on the daily time step of snow telemetry data to model the snowmelt components of the hydrograph for small watersheds. Hydrol. Process. 2014, 28, 4654–4668. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.; Tague, C.L. Effects of changes in winter snowpacks on summer low flows: Case studies in the Sierra Nevada, California, USA. Hydrol. Process. 2013, 28, 5048–5064. [Google Scholar] [CrossRef]
- Carroll, R.W.H.; Deems, J.S.; Niswonger, R.; Schumer, R.; Williams, K.H. The Importance of Interflow to Groundwater Recharge in a Snowmelt-Dominated Headwater Basin. Geophys. Res. Lett. 2019, 46, 5899–5908. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39, 1208. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Kirchner, P.B.; Bales, R.C. Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: A statistical summary from lidar data. Cryosphere 2016, 10, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Gleason, K.; Nolin, A.W.; Roth, T.R. Developing a representative snow-monitoring network in a forested mountain watershed. Hydrol. Earth Syst. Sci. 2017, 21, 1137–1147. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; Nogués-Bravo, D. A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrol. Process. 2005, 19, 3167–3176. [Google Scholar] [CrossRef]
- Moreno, J.I.L.; Latron, J.; Lehmann, A. Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrol. Process. 2009, 24, 1914–1928. [Google Scholar] [CrossRef]
- Hultstrand, D.M. Geostatistical Methods for Estimating Snowmelt Contribution to the Seasonal Water Balance in an Alpine Watershed. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2006. Available online: https://hdl.handle.net/10217/233658 (accessed on 27 October 2021).
- Boustead, B.E.M.; Hilberg, S.D.; Shulski, M.D.; Hubbard, K.G. The Accumulated Winter Season Severity Index (AWSSI). J. Appl. Meteorol. Clim. 2015, 54, 1693–1712. [Google Scholar] [CrossRef] [Green Version]
- Vögeli, C.; Lehning, M.; Wever, N.; Bavay, M. Scaling Precipitation Input to Spatially Distributed Hydrological Models by Measured Snow Distribution. Front. Earth Sci. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, B.J.; Decker, S.G. The Local Winter Storm Scale: A Measure of the Intrinsic Ability of Winter Storms to Disrupt Society. Bull. Am. Meteorol. Soc. 2011, 92, 721–737. [Google Scholar] [CrossRef] [Green Version]
- Tarboton, D.G.; Luce, C.H. Utah Energy Balance Snow Accumulation Model (UEB)—Computer Model Technical Description and Users Guide; Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station: Logan, UT, USA, 2006; p. 64. [Google Scholar]
- Bloschl, G.; Grayson, R. Spatial Observations and Interpolation. In Spatial Pattern in Catchment Hydrology: Observations and Modeling; Grayson, R., Bloschl, G., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 17–50. [Google Scholar]
- Hiemstra, C.A.; Liston, G.E.; Reiners, W.A. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Model. 2006, 197, 35–51. [Google Scholar] [CrossRef]
- Wooldridge, G.L.; Musselman, R.C.; Sommerfeld, R.A.; Fox, D.G.; Connell, B.H. Mean Wind Patterns and Snow Depths in an Alpine-Subalpine Ecosystem as Measured by Damage to Coniferous Trees. J. Appl. Ecol. 1996, 33, 100. [Google Scholar] [CrossRef] [Green Version]
- Deems, J.S.; Fassnacht, S.R.; Elder, K.J. Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites. J. Hydrometeorol. 2008, 9, 977–988. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Revuelto, J.; Fassnacht, S.; Azorin-Molina, C.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Sexstone, G.A. Snowpack variability across various spatio-temporal resolutions. Hydrol. Process. 2014, 29, 1213–1224. [Google Scholar] [CrossRef]
- Musselman, R.C. The Glacier Lakes Ecosystem Experiments Site. Rocky Mountain Forest and Range Experiment Station, General Technical Report RM-249; U.S. Dept. of Agriculture: Fort Collins, CO, USA, 1994; p. 94. [Google Scholar]
- Korfmacher, J.L.; Hultstrand, D.M. Glacier Lakes Ecosystem Experiments Site Hourly Meteorology Tower Data; Rocky Mountain Research Station, U.S.; Forest Service, U.S.; Department of Agriculture: Fort Collins, CO, USA, 2006. [Google Scholar]
- Hultstrand, D.M.; Fassnacht, S.R.; Stednick, J.D. Geostatistical methods for estimating snowmelt contribution to the alpine water balance. In Proceedings of the Annual Western Snow Conference, Las Cruces, NM, USA, 17–20 April 2006; Volume 74, pp. 149–154. [Google Scholar]
- Fassnacht, S.; López-Moreno, J.; Toro, M.; Hultstrand, D. Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica. Antarct. Sci. 2013, 25, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Cline, D.; Elder, K.; Bales, R.C. Scale effects in a distributed snow water equivalence and snowmelt model for mountain basins. Hydrol. Process. 1998, 112, 1527–1536. [Google Scholar] [CrossRef]
- Lapen, D.R.; Martz, L.W. An investigation of the spatial association between snow depth and topography in a Prairie agricultural landscape using digital terrain analysis. J. Hydrol. 1996, 184, 227–298. [Google Scholar] [CrossRef]
- Balk, B.; Elder, K. Combining binary regression tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resour. Res. 2000, 36, 13–26. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Nogués-Bravo, D. Interpolating snow depth data: A comparison of methods. Hydrol. Process. 2006, 20, 2217–2232. [Google Scholar] [CrossRef]
- Musselman, R.C.; Rocky Mountain Research Station, Fort Collins, CO, USA. Personal communication, 2004.
- DeWalle, D.R.; Rango, A. Principles of Snow Hydrology; Cambridge University Press: Cambridge, UK, 2008; p. 428. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G. Mountain Weather and Climate, 2nd ed.; Routledge: New York, NY, USA, 1992; p. 402. [Google Scholar]
- Roe, G.H. Orographic Precipitation. Annu. Rev. Earth Planet Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- McClung, D.; Schaerer, P. The Avalanche Handbook, 3rd ed.; The Mountaineers: Seattle, WA, USA, 2006; p. 272. [Google Scholar]
- Deems, J.S. Topographic Effects on the Spatial and Temporal Patterns of Snow Temperature Gradients in a Mountain Snowpack. Master’s Thesis, Montana State University, Bozeman, MT, USA, 2002. [Google Scholar]
- Meromy, L.; Molotch, N.P.; Link, T.E.; Fassnacht, S.R.; Rice, R. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Process. 2013, 27, 2383–2400. [Google Scholar] [CrossRef]
- Whiting, J.M.; Kiss, J. Integration of Digital Terrain Models into Ground Based Snow and Runoff Measurements; IAHS Publication: Wallingford, UK, 1987; Volume 166, pp. 375–387. [Google Scholar]
- Luce, C.H.; Tarboton, D.G.; Cooley, K.R. The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Process. 1998, 12, 1671–1683. [Google Scholar] [CrossRef]
- Winstral, A.; Marks, D. Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Process. 2002, 16, 3585–3603. [Google Scholar] [CrossRef]
- Marofi, S.; Tabari, H.; Abyaneh, H.Z. Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods. Water Resour. Manag. 2011, 25, 1417–1435. [Google Scholar] [CrossRef]
- Björk, P. Modelling the spatial variability of maximum mountain snow depth in Northern Norway. Nord. Geogr. Publ. 2016, 45, 81–88. [Google Scholar]
- Willmott, C.T. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Berisford, D.F.; Boardman, J.W.; Bormann, K.J.; Deems, J.; Gehrke, F.; Hedrick, A.; Joyce, M.; Laidlaw, R.; Marks, D.; et al. The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 2016, 184, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Hultstrand, D.M.; Fassnacht, S.R. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework. Front. Earth Sci. 2018, 12, 728–738. [Google Scholar] [CrossRef]
- López-Moreno, J.; Fassnacht, S.; Heath, J.; Musselman, K.; Revuelto, J.; Latron, J.; Morán-Tejeda, E.; Jonas, T. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 2013, 55, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Korfmacher, J.L.; Hultstrand, D.M.; Doebley, V.T. Glacier Lakes Ecosystem Experiments Site (GLEES) Hourly Meteorology Tower Data, 2nd ed.; Forest Service Research Data Archive: Washington, DC, USA, 2017. [Google Scholar]
- Hultstrand, D.M.; Fassnacht, S.R.; Stednick, J.D. GLEES (Glacier Lakes Ecosystem Experiments Site) Snow Depth Data Measured Annually at Peak Accumulation from 2005 to 2014. PANGAEA submitted for publication (December 2021). Available online: https://issues.pangaea.de/browse/PDI-30542 (accessed on 15 December 2021).
- ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2020.
- Fu, P.; Rich, P.M. The Solar Analyst 1.0 User Manual; Helios Environmental Modeling Institute LLC (HEMI): Douglas, KS, USA, 2000. [Google Scholar]
- Breiman, L.; Friedman, J.; Olsen, R.; Stone, C. Classification and Regression Trees; Wadsworth and Brooks: Pacific Grove, CA, USA, 1984; p. 358. [Google Scholar]
- Elder, K.; Michaelson, J.; Dozier, J. Small Basin Modeling of Snow Water Equivalence Using Binary Regression Tree Methods; IAHS Publication: Wallingford, UK, 1995; Volume 228, pp. 129–139. [Google Scholar]
- Peart, N. Something for Nothing. In 2112; Brown, T., Ed.; Anthem Records: Toronto, ON, Canada, 1976; track 6. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalised additive model: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
Sample Year | Number of Samples | Sample Mean Depth (cm) | Sample Standard Deviation (cm) | Sample Coefficient of Variation | Brooklyn Lake Snow Depth (cm) | Simulated Snow Depth (cm) | Difference (cm) | Percent Difference |
---|---|---|---|---|---|---|---|---|
2005 | 538 | 182 | 98 | 0.54 | 117 | 187 | 5 | 3% |
2006 | 395 | 176 | 105 | 0.60 | 147 | 206 | 30 | 17% |
2007 | 520 | 198 | 107 | 0.54 | 152 | 209 | 11 | 6% |
2008 | 407 | 217 | 104 | 0.48 | 180 | 227 | 10 | 5% |
2009 | 408 | 204 | 90 | 0.44 | 175 | 224 | 20 | 10% |
2010 | 182 | 266 | 98 | 0.37 | 180 | 227 | −39 | −15% |
2011 | 118 | 285 | 118 | 0.42 | 287 | 295 | 10 | 4% |
2012 | 255 | 173 | 107 | 0.62 | 91 | 170 | −3 | −2% |
2013 | 294 | 195 | 102 | 0.52 | 157 | 212 | 17 | 9% |
2014 | 265 | 226 | 99 | 0.44 | 208 | 245 | 19 | 8% |
Sample Year | Elevation | Solar Radiation | Slope | Northness | Aspect | Ponding | Maximum Upwind Slope |
---|---|---|---|---|---|---|---|
2005 | *** | + | *** | + | |||
2006 | *** | * | *** | + | * | ||
2007 | * | * | ** | *** | ** | ||
2008 | *** | ** | + | *** | + | ||
2009 | * | + | ** |
Omitted Year | Snow Depth Correlation | Correlation with Residual | |||||||
---|---|---|---|---|---|---|---|---|---|
MAE | D | Elevation | Solar Radiation | Slope | Northness | Aspect | Ponding | Max. Upwind Slope | |
2005 | 73 | 0.608 | −0.06 | −0.03 | 0.01 | −0.11 | −0.05 | 0.17 | 0.01 |
2006 | 73 | 0.559 | 0.29 | 0.18 | 0.16 | −0.02 * | 0.10 | −0.10 | −0.02 |
2007 | 72 | 0.598 | −0.15 | −0.03 | −0.02 | 0.11 * | −0.01 | −0.09 | −0.01 |
2008 | 73 | 0.568 | 0.07 | −0.06 | −0.07 | 0.07 * | 0.10 | −0.03 | −0.04 |
2009 | 75 | 0.575 | −0.15 | −0.13 | −0.10 | 0.01 | −0.09 | 0.06 | 0.03 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hultstrand, D.M.; Fassnacht, S.R.; Stednick, J.D.; Hiemstra, C.A. Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs. Atmosphere 2022, 13, 3. https://doi.org/10.3390/atmos13010003
Hultstrand DM, Fassnacht SR, Stednick JD, Hiemstra CA. Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs. Atmosphere. 2022; 13(1):3. https://doi.org/10.3390/atmos13010003
Chicago/Turabian StyleHultstrand, Douglas M., Steven R. Fassnacht, John D. Stednick, and Christopher A. Hiemstra. 2022. "Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs" Atmosphere 13, no. 1: 3. https://doi.org/10.3390/atmos13010003
APA StyleHultstrand, D. M., Fassnacht, S. R., Stednick, J. D., & Hiemstra, C. A. (2022). Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs. Atmosphere, 13(1), 3. https://doi.org/10.3390/atmos13010003