The Temporal–Spatial Characteristics of Column NO2 Concentration and Influence Factors in Xinjiang of Northwestern Arid Region in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Applicability Calibration of TROPOMI NO2 VCD in Xinjiang
3.2. Spatial and Temporal Distribution Characteristics of NO2 VCD in Xinjiang
3.2.1. Spatial Distribution Characteristics
3.2.2. Monthly Variation Characteristics
3.2.3. Seasonal Variation Characteristics
3.3. Analysis of Factors Affecting NO2 VCD
3.3.1. Meteorological Factors
3.3.2. Economic Development and Industrial Layout
3.3.3. Motor Vehicle Exhaust Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shetter, R.E.; Stedman, D.H.; West, D.H. The NO/NO2/O3 Photostationary State in Claremont, California. J. Air Pollut. Control. Assoc. 2012, 33, 212–214. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Wu, B.; Du, J.; Shi, K. Multifractal pattern of the response of O3 concentration change to NO2 emission reduction in suburban forest park during the COVID-19 epidemic. Acta Ecol. Sin. 2021, 41, 9669–9680. [Google Scholar] [CrossRef]
- Meng, L.; Soenario, I.; Helbich, M.; Schmitz, O.; Hoek, G.; van der Molen, M.; Karssenberg, D. Land use regression models revealing spatiotemporal co-variation in NO2, NO, and O3 in the Netherlands. Atmos. Environ. 2020, 223, 117238. [Google Scholar] [CrossRef]
- Meena, G.S.; Jadhav, D.B. Study of diurnal and seasonal variation of atmospheric NO2, O3, H2O and O4 at Pune, India. Atmósfera 2007, 20, 271–287. [Google Scholar]
- Xie, Y.; Zhao, B.; Zhang, L.; Luo, R. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 2015, 3, 141–149. [Google Scholar] [CrossRef]
- Feng, R.; Gao, H.; Luo, K.; Fan, J. Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmos. Environ. 2020, 232, 117534. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, C. Basis of Atmospheric Chemistry; China Meteorolgical Press: Beijing, China, 2003; pp. 46–47. (In Chinese) [Google Scholar]
- Yu, Y.; Wang, T. New Urbanization, Energy-Intensive Industries Agglomeration and Analysis of Nitrogen Oxides Emissions Reduction Mechanisms. Atmosphere 2021, 12, 1244. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Luo, L.; Chen, X.; Zhang, Y.; Zhang, H.; Yang, S.; Li, Y. Spatial and Temporal Distributions of Air Pollutants in Nanchang, Southeast China during 2017–2020. Atmosphere 2021, 12, 1298. [Google Scholar] [CrossRef]
- Ma, C. Research on Temporal and Spatial Distribution and Influencing Factors of China Tropospheric NO2 Column Concentration by OMI Data. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2020. [Google Scholar]
- Georgoulias, A.K.; van der, A.R.J.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmos. Chem. Phys 2019, 19, 6269–6294. [Google Scholar] [CrossRef]
- Opio, R.; Mugume, I.; Nakatumba-Nabende, J. Understanding the Trend of NO2, SO2 and CO over East Africa from 2005 to 2020. Atmosphere 2021, 12, 1283. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, H.; Chen, J.; Bai, R.; Wang, F.; Wang, Y.; Zhang, J.; Liu, X.; Chen, N.; Xu, K. Analysis on the contribution rates of point and area source emissions to wuhan SO2, NO2, PM2.5 concentrations and atmospheric environmental capacity. Atmos. Pollut. Res. 2021, 12, 101209. [Google Scholar] [CrossRef]
- Steinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric chemistry and physics: From air pollution to climate change. Phys. Today 1998, 51, 88. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Mohegh, A.; Goldberg, D.L.; Kerr, G.H.; Brauer, M.; Burkart, K.; Hystad, P.; Larkin, A.; Wozniak, S.; Lamsal, L. Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: Estimates from global datasets. Lancet Planet. Health 2022, 6, e49–e58. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Chen, R.; Kan, H.; Zhou, M.; Zhao, B. Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities. Atmos. Environ. 2021, 246, 118170. [Google Scholar] [CrossRef]
- Qian, Y.; Li, H.; Rosenberg, A.; Li, Q.; Sarnat, J.; Papatheodorou, S.; Schwartz, J.; Liang, D.; Liu, Y.; Liu, P. Long-Term Exposure to Low-Level NO2 and Mortality among the Elderly Population in the Southeastern United States. Environ. Health Perspect. 2021, 129, 127009. [Google Scholar] [CrossRef] [PubMed]
- de Foy, B.; Schauer, J.J. An improved understanding of NOx emissions in South Asian megacities using TROPOMI NO2 retrievals. Environ. Res. Lett. 2022, 17, 024006. [Google Scholar] [CrossRef]
- Shojaei Baghini, N.; Falahatkar, S.; Hassanvand, M.S. Time series analysis and spatial distribution map of aggregate risk index due to tropospheric NO2 and O3 based on satellite observation. J. Environ. Manag. 2022, 304, 114202. [Google Scholar] [CrossRef]
- Jiang, J.; Guo, W.; Wang, C. The traffic pattern effects on heat island and air pollution in Beijing during the Chinese spring festival holiday. Desert Oasis Meteorol. 2021, 15, 89–97. [Google Scholar] [CrossRef]
- Sun, R.; Gao, Y.; Chen, Z.; Zang, Q. Characteristics of Temporal and Spatial Distributionof Atmospheric NO2 in Main Urban Areas of Chongqing. Earth Environ. 2019, 47, 26–33. [Google Scholar] [CrossRef]
- Schreier, S.F.; Peters, E.; Richter, A.; Lampel, J.; Wittrock, F.; Burrows, J.P. Ship-based MAX-DOAS measurements of tropospheric NO2 and SO2 in the South China and Sulu Sea. Atmos. Environ. 2015, 102, 331–343. [Google Scholar] [CrossRef]
- Peters, E.; Wittrock, F.; Großmann, K.; Frieß, U.; Richter, A.; Burrows, J.P. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations. Atmos. Chem. Phys. 2012, 12, 11179–11197. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xie, P.; Si, F.; Li, A.; Liu, W. Determination of tropospheric NO2 by airborne multi axis differential optical absorption spectroscopy. Acta Phys. Sin. 2012, 61, 024204. [Google Scholar] [CrossRef]
- Yang, D.; Zeng, Y.; Xi, L.; Zhou, H.; Qiu, X.; Luo, Y.; Si, F.; Liu, W. Analysis of the emission flux of pollution source NOx based on synchronous observation of airborne and vehicular differential optical absorption spectroscopy technique. Acta Optica. Sin. 2020, 40, 0501002. [Google Scholar] [CrossRef]
- Yang, J. Profiling Atmospheric SO2, NO2 and CO2 by Lidar. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2019. [Google Scholar]
- Liu, L. Experimental study on spatial and temporal distribution of atmospheric SO2 and NO2 concentrations in Huainan by differential absorption lidar. Master’s Thesis, University of Science and Technology of China, Hefei, Anhui, 2019. [Google Scholar]
- Chen, L.; Yan, S.; Ni, C.; Zhu, L.; Xiao, H.; Wang, Y.; Wang, W.; He, J.; Guo, W. Long-term trends of tropospheric NO2 over Fenwei Plain based on OMI data. China Environ. Sci. 2022, 42, 3492–3501. [Google Scholar] [CrossRef]
- Leue, C.; Wenig, M.; Wagner, T.; Klimm, O.; Platt, U.; Jähne, B. Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences. J. Geophys. Res. 2001, 106, 5493–5505. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J.P. Tropospheric NO2 from GOME measurements. Adv. Space Res. 2002, 29, 1673–1683. [Google Scholar] [CrossRef]
- Martin, R.V.; Chance, K.; Jacob, D.J.; Kurosu, T.P.; Spurr, R.J.D.; Bucsela, E.; Gleason, J.F.; Palmer, P.I.; Bey, I.; Fiore, A.M.; et al. An improved retrieval of tropospheric nitrogen dioxide from GOME. J. Geophys. Res. Atmos. 2002, 107, ACH 9-1–ACH 9-21. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Brinksma, E.J. Error analysis for tropospheric NO2 retrieval from space. J. Geophys. Res. Atmos. 2004, 109, D04311. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P.; Rakitin, V. Comparison and Validation of TROPOMI and OMI NO2 Observations over China. Atmosphere 2020, 11, 636. [Google Scholar] [CrossRef]
- Jeong, U.; Hong, H. Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-Term Exposure to Surface NO2 over South Korea. Remote Sens. 2021, 13, 1877. [Google Scholar] [CrossRef]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.; Eskes, H.J.; Eichmann, K.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Judd, L.; Al-Saadi, J.; Szykman, J.; Valin, L.C.; Janz, S.; Kowalewski, M.; Eskes, H.; Veefkind, J.P.; Cede, A.; Mueller, M.; et al. Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. Atmos. Meas. Tech 2020, 13, 6113–6140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, P.; Zhang, Y.; Li, X.; Qiu, H. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997-2006 based on satellite measurement. Sci. China-Ser. D Earth Sci. 2007, 37, 1409–1416. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef]
- Xu, J.; Lindqvist, H.; Liu, Q.; Wang, K.; Wang, L. Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing. Atmos. Pollut. Res. 2020, 12, 57–67. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y. Remote sensing monitoring of NO2 concentrations based on Sentinel-5P in China. China Environ. Sci. 2022. [Google Scholar] [CrossRef]
- Zhang, X. Study on the Relationship between OMI Satellite Data and Near-Surface NO2 Concentration in Sichuan Province. Master’s Thesis, Chengdu University of Information Technology, Chengdu, China, 2019. [Google Scholar] [CrossRef]
- Müller, I.; Erbertseder, T.; Taubenböck, H. Tropospheric NO2: Explorative analyses of spatial variability and impact factors. Remote Sens. Environ. 2022, 270, 112839. [Google Scholar] [CrossRef]
- Cheng, M. Characters of the OMI NO2 Column Densities in Zhejiang Province during 2005–2009. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2010. [Google Scholar]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Wang, J.; Alli, A.S.; Clark, S.; Hughes, A.; Ezzati, M.; Beddows, A.; Vallarino, J.; Nimo, J.; Bedford-Moses, J.; Baah, S.; et al. Nitrogen oxides (NO and NO2) pollution in the Accra metropolis: Spatiotemporal patterns and the role of meteorology. Sci. Total Environ. 2022, 803, 149931. [Google Scholar] [CrossRef]
- Su, J.; Zhang, C.; Hu, Q.; Liu, H.; Liu, J. Analysis of Spatial and Temporal Change Trend of Xinjiang NO2 in 2007–2017 Based on Satellite Hyperspectral Remote Sensing. Spectrosc. Spectr. Anal. 2021, 41, 1631–1638. [Google Scholar]
- Li, Y.; Wang, L.; Zhao, X. Spatial and Temporal Variation of Atmospheric Tropospheric NO2 Column Concentration in Kuitun City, Dushanzi District, and Wusu City. Res. Environ. Sci. 2021, 34, 2122–2131. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Ma, Y. Temporal and Spatial Changes of NO2 and SO2 in the Troposphere in the “Wu–Chang–Wu City” Circle in Xinjiang. Environ. Sci. Technol. 2021, 44, 133–142. [Google Scholar] [CrossRef]
- Department of Ecology and Environment of Xinjiang Province. Xinjiang Ecology and Environment Statement 2020. Available online: http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/202106/06b2bb0814994bc88eeab9dba596655d/files/000f9ae8e4d84bdda6ad3f6812afed4c.pdf (accessed on 1 August 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. China Ecology and Environment Statement 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf (accessed on 1 August 2022).
- Zhang, L.; Zhou, C.; Zou, T.; Li, X.; Ma, P.; Chen, H.; Yang, X.; Wang, Z.; Zhao, S.; Zhang, Y. Spatial and temporal characteristics of tropospheric NO2 column concentration in China in 2019 based on Sentinel-5P/Tropomi data. In Proceedings of the 2020 CSES Annual Conference on Environmental Science and Technology (Part III), Nanjing, China, 21 September 2020. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Saw, G.K.; Dey, S.; Kaushal, H.; Lal, K. Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmos. Environ. 2021, 259, 118514. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, L.; Xu, S.; Liang, Y.; Liu, X. Integration of Poyang lake land and sea terrain data based on constrained edge Delaunay triangulation network. Sci. Surv. Mapp. 2019, 44, 48–52. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Zhang, C.; Li, R.; Sun, C.; Yu, X.; Yu, H.; Zhang, Z.; Wang, B. PatCC1: An efficient parallel triangulation algorithm for spherical and planar grids with commonality and parallel consistency. Geosci. Model Dev 2019, 12, 3311–3328. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Xie, Y.; Wu, L. Research on Influence Factors of Air Quality in the Host Area of the 24th Winter Olympic Games Based on Grey Relational Analysis. Front. Environ. Sci. 2021, 9, 757533. [Google Scholar] [CrossRef]
- Pan, L.; Sun, B.; Wang, W. City Air Quality Forecasting and Impact Factors Analysis Based on Grey Model. Procedia Eng. 2011, 12, 74–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, J.; Lu, J.; Wu, G. Challenges for Improving Air Quality in Guangdong–Hong Kong–Macao Greater Bay Area and Lessons from Foreign Bay Areas. Environ. Prot. 2019, 47, 61–63. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yam, J. The characteristics of NO2 and SO2 in column concentration over Karamay City. Acta Sci. Nat. Univ. Sunyatseni 2021, 60, 94–102. [Google Scholar] [CrossRef]
- Sun, Y. Numerical Simulation of Meteorological Factors and Typical NO2 Pollution Cases in Nanjing. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2022. [Google Scholar] [CrossRef]
- Li, X. The Research on Formation Mechanism of the Severe Air Pollution in the Gap Town Urumqi in Winter. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang Uygur Autonomous Region Statistical Bulletin on National Economic and Social Development in 2019. Available online: http://www.xinjiang.gov.cn/xinjiang/tjgb/202102/4a4614eef08b472d98b3ff73f17909c0.shtml (accessed on 1 August 2022).
- Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang Uygur Autonomous Region Statistical Bulletin on National Economic and Social Development in 2020. Available online: http://www.xinjiang.gov.cn/xinjiang/tjgb/202106/5037ac528c58479dbaabddce9050a284.shtml (accessed on 1 August 2022).
Variables | Data Sets | Source | Unit |
---|---|---|---|
Remote Sensing | NO2 VCD | European Space Agency | mol·m−2 |
Ground-based | NO2 concentration | Department of Ecology and Environment of Xinjiang Province | ug·m−3 |
Meteorological | pressure | The national benchmark weather station in Urumqi, China | hPa |
temperature | °C | ||
precipitation | mm | ||
relative humidity | % | ||
wind direction | − | ||
wind speed | m/s | ||
Socio-economic | GDP | Xinjiang Uygur Autonomous Region Bureau of Statistics | billion |
Nitrogen oxide emissions | 10,000 tons | ||
Motor vehicle exhaust emissions | − |
NO2 VCD of Prefectures | NO2 VCD of Key Cities | ||
---|---|---|---|
Altay Prefecture | 12.3 | Aletai City | 19.4 |
Tarbagatay Prefecture | 23.5 | Tacheng City | 15.2 |
Bortala Mongol Autonomous Prefecture | 19.8 | Bole | 41.5 |
Ili Kazak Autonomous Prefecture | 20.0 | Yining City | 60.0 |
Changji Hui Autonomous Prefecture | 55.5 | Changji City | 411.1 |
Turpan | 23.4 | Turpan City | 50.2 |
Hami | 14.3 | Hami City | 38.0 |
Mongolian Autonomous Prefecture of Bayingolin | 9.9 | Korla | 28.3 |
Aksu Prefecture | 14.5 | Aksu City | 45.6 |
Kizilsu Kirghiz Autonomous Prefecture | 12.2 | Atushi | 29.0 |
Kashgar Prefecture | 12.9 | Kashgar City | 41.4 |
Hotan Prefecture | 9.4 | Hotan City | 32.0 |
Urumqi | 553.9 | ||
Shihezi City | 205.7 | ||
Karamay | 39.7 |
Nitrogen Oxide Emissions | 2019 | 2020 |
---|---|---|
Industrial emissions | 13.82 | 11.87 |
Urban domestic emissions | 2.02 | 1.69 |
Motor vehicle emissions | 14.03 | 11.49 |
Total | 29.87 | 25.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Li, X. The Temporal–Spatial Characteristics of Column NO2 Concentration and Influence Factors in Xinjiang of Northwestern Arid Region in China. Atmosphere 2022, 13, 1533. https://doi.org/10.3390/atmos13101533
Yu Z, Li X. The Temporal–Spatial Characteristics of Column NO2 Concentration and Influence Factors in Xinjiang of Northwestern Arid Region in China. Atmosphere. 2022; 13(10):1533. https://doi.org/10.3390/atmos13101533
Chicago/Turabian StyleYu, Zhixiang, and Xia Li. 2022. "The Temporal–Spatial Characteristics of Column NO2 Concentration and Influence Factors in Xinjiang of Northwestern Arid Region in China" Atmosphere 13, no. 10: 1533. https://doi.org/10.3390/atmos13101533
APA StyleYu, Z., & Li, X. (2022). The Temporal–Spatial Characteristics of Column NO2 Concentration and Influence Factors in Xinjiang of Northwestern Arid Region in China. Atmosphere, 13(10), 1533. https://doi.org/10.3390/atmos13101533