Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods on Trend Analysis
2.3.1. Moving Average
2.3.2. Drought Indices
Reconnaissance Drought Index (RDI)
Standardized Precipitation Index (SPI)
SPEI Calculation
- (1)
- Calculate climate level measurement—climate level measurement Di is the difference between precipitation Pi and potential evapotranspiration PETi:
- (2)
- Establish the cumulative climate water balance series for different time scales:
- (3)
- Apply the log-logistic probability density function to fit the data series:
2.3.3. Mann–Kendall Test
2.4. Abrupt Temporal Changes
3. Results
3.1. Temporal Trends of Temperature Change
3.1.1. Trends of Inter-Annual Average Temperature
3.1.2. Annual Average Maximum and Minimum Temperature Change
3.1.3. Seasonal Variation of Temperature
3.2. Temporal Trends of Precipitation Change
3.2.1. Inter-Annual Precipitation Change
3.2.2. Inter-Decadal Precipitation Change
3.2.3. Normal Value Precipitation Change
3.3. Abrupt Change Analysis
3.4. Drought Indices Trends on Different Time Scales
3.5. Drought Frequency Analysis
3.6. Characteristics of the Evolution of Inter-Annual Drought Trends in SPEI
3.7. Correlation Analysis between Turpan Region SPEI and Meteorological Elements
4. Discussion
4.1. Possible Reasons for Temperature and Precipitation Changes
4.2. Disadvantages of the Climatic Drought Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bo, L.I.U.; Jinming, F.; Zhuguo, M.A.; Rongqing, W.E.I. Characteristics of Climate Changes in Xinjiang from 1960 to 2005. Clim. Environ. Res. 2009, 14, 414–426. [Google Scholar]
- Ren, G.Y.; Xu, M.Z.; Chu, Z.Y.; Guo, J.; Li, Q.X.; Liu, X.N.; Wang, Y. Changes of Surface Air Temperature in China During 1951–2004. Clim. Environ. Res. 2005, 10, 717–727. [Google Scholar]
- Yang, L.; Villarini, G.; Smith, J.A.; Tian, F.Q.; Hu, H.P. Changes in seasonal maximum daily precipitation in China over the period 1961–2006. Int. J. Climatol. 2013, 33, 1646–1657. [Google Scholar] [CrossRef]
- Zhang, A.J.; Zheng, C.M.; Wang, S.; Yao, Y.Y. Analysis of streamflow variations in the Heihe River Basin, northwest China: Trends, abrupt changes, driving factors and ecological influences. J. Hydrol.-Reg. Stud. 2015, 3, 106–124. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Chen, X.; Bai, Y. SPI-based Drought Variations in Xinjiang, China. J. Appl. Meteorolgical Sci. 2012, 23, 322–330. [Google Scholar]
- Xuan, J.; Zheng, J.; Liu, Z. SPEI-based Spatiotemporal Variation of Drought in Xinjiang. Arid Zone Res. 2016, 33, 338–344. [Google Scholar]
- Wang, N.; Jing, Y.; Xu, X.; Hanggoro, W. Application of RDI index in drought monitoring of five regions in Xinjiang. Arid Land Geogr. 2020, 43, 99–107. [Google Scholar]
- Ci, H.; Zhang, Q.; Xiao, M. Evaluation and comparability of four meteorological drought indices during drought monitoring in Xinjiang. Acta Sci. Nat. Univ. Sunyatseni 2016, 55, 124–133. [Google Scholar]
- Chen, Y.; Xu, C.; Hao, X.; Li, W.; Chen, Y.; Zhu, C.; Ye, Z. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar]
- Wang, W.G.; Xing, W.Q.; Shao, Q.X. How large are uncertainties in future projection of reference evapotranspiration through different approaches? J. Hydrol. 2015, 524, 696–700. [Google Scholar] [CrossRef]
- Merabti, A.; Meddi, M.; Martins, D.S.; Pereira, L.S. Comparing SPI and RDI Applied at Local Scale as Influenced by Climate. Water Resour. Manag. 2018, 32, 1071–1085. [Google Scholar] [CrossRef]
- Abadi, M.; Gordon, A.D. A calculus for cryptographic protocols: The spi calculus. In Proceedings of the 4th ACM Conference on Computer and Communications Security, Zurich, Switzerland, 1–4 April 1997; Volume 148, pp. 1–70. [Google Scholar]
- Thornthwaite, C.W. An Approach Toward a Rational Classification of Climate. Soil Sci. 1948, 38, 55–94. [Google Scholar]
- Yamamoto, R.; Iwashima, T.; Kazadi, S.N.; Hoshiai, M. Climatic Jump—A Hypothesis in Climate Diagnosis. J. Meteorol. Soc. Jpn. 1985, 63, 1157–1160. [Google Scholar] [CrossRef]
- Fu, C.; Wang, Q. The Definition and Detection of the Abrupt Climatic Change. Chin. J. Atmos. Sci. 1992, 16, 482–493. [Google Scholar]
- Xue, Y.; Han, P.; Feng, G. Change Trend of the precipitation and Air Temperature in Xinjiang since Recent 50 Years. Arid Zone Res. 2003, 20, 127–130. [Google Scholar]
- Yi, X.S.; Li, G.S.; Yin, Y.Y. Spatio-temporal variation of precipitation in the Three-River Headwater Region from 1961 to 2010. J. Geogr. Sci. 2013, 23, 447–464. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.W.; Yang, H.B.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
Period | Annual Average Temperature | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Anomaly | Mean | Anomaly | Mean | Anomaly | Mean | Anomaly | Mean | Anomaly | |
1960–1969 | 10.93 | −0.79 | 14.65 | −0.52 | 26.49 | −0.48 | 10.10 | −0.99 | −7.50 | −1.17 |
1970–1979 | 10.76 | −0.97 | 14.27 | −0.89 | 26.13 | −0.84 | 10.29 | −0.81 | −7.66 | −1.33 |
1980–1989 | 11.42 | −0.31 | 14.63 | −0.53 | 26.42 | −0.55 | 10.73 | −0.37 | −6.12 | 0.21 |
1990–1999 | 11.77 | 0.048 | 14.84 | −0.32 | 26.43 | −0.54 | 11.11 | 0.01 | −5.29 | 1.04 |
2000–2009 | 12.47 | 0.75 | 15.96 | 0.80 | 27.44 | 0.473 | 11.96 | 0.86 | −5.47 | 0.86 |
2010–2019 | 12.99 | 1.27 | 16.63 | 1.46 | 28.89 | 1.93 | 12.41 | 1.31 | −5.93 | 0.40 |
Region | Spring (mm·(10a)−1) | Summer (mm·(10a)−1) | Autumn (mm·(10a)−1) | Winter (mm·(10a)−1) | Year (mm·(10a)−1) |
---|---|---|---|---|---|
Kumishi | 0.048 | 0.048 | 0.014 | 0.01 | 0.03 |
Turpan | −0.002 | −0.006 | 0 | −0.001 | −0.003 |
Shanshan | −0.005 | −0.027 | 0.027 | 0.008 | 0.001 |
Turpan region | 0.014 | 0.005 | 0.013 | 0.005 | 0.009 |
Region | Period | Spring (mm) | Summer (mm) | Autumn (mm) | Winter (mm) | Year (mm) |
---|---|---|---|---|---|---|
Kumishi | (1960–1989)–(1970–1999) | −0.654 | −1.467 | −0.508 | −0.156 | −0.696 |
(1970–1999)–(1980–2009) | −0.649 | −0.886 | 0.087 | −0.132 | −0.395 | |
(1980–2009)–(1990–2019) | −0.319 | −0.856 | 0.040 | −0.147 | −0.320 | |
Turpan | (1960–1989)–(1970–1999) | 0.057 | −0.003 | −0.089 | −0.023 | −0.015 |
(1970–1999)–(1980–2009) | −0.147 | −0.038 | −0.002 | 0.272 | 0.021 | |
(1980–2009)–(1990–2019) | 0.069 | 0.053 | 0.266 | −0.138 | 0.063 | |
Shanshan | (1960–1989)–(1970–1999) | −0.783 | −1.712 | −0.069 | −0.997 | −0.890 |
(1970–1999)–(1980–2009) | −0.828 | 1.334 | −1.108 | −0.011 | −0.153 | |
(1980–2009)–(1990–2019) | 0.574 | 0.884 | 0.216 | −0.087 | 0.397 | |
Turpan region | (1960–1989)–(1970–1999) | −0.460 | −1.061 | −0.222 | −0.392 | −0.534 |
(1970–1999)–(1980–2009) | −0.541 | 0.137 | −0.341 | 0.043 | −0.176 | |
(1980–2009)–(1990–2019) | 0.108 | 0.027 | 0.174 | −0.124 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Li, B.; Yu, Y.; Sun, L.; Zhang, H.; Malik, I.; Wistuba, M.; Yu, R. Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years. Atmosphere 2022, 13, 1561. https://doi.org/10.3390/atmos13101561
He J, Li B, Yu Y, Sun L, Zhang H, Malik I, Wistuba M, Yu R. Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years. Atmosphere. 2022; 13(10):1561. https://doi.org/10.3390/atmos13101561
Chicago/Turabian StyleHe, Jing, Boshan Li, Yang Yu, Lingxiao Sun, Haiyan Zhang, Ireneusz Malik, Malgorzata Wistuba, and Ruide Yu. 2022. "Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years" Atmosphere 13, no. 10: 1561. https://doi.org/10.3390/atmos13101561
APA StyleHe, J., Li, B., Yu, Y., Sun, L., Zhang, H., Malik, I., Wistuba, M., & Yu, R. (2022). Temporal Variability of Temperature, Precipitation and Drought Indices in Hyper-Arid Region of Northwest China for the Past 60 Years. Atmosphere, 13(10), 1561. https://doi.org/10.3390/atmos13101561