Assessment of Lockdown Effectiveness during COVID-19 Pandemic Using Air Pollution Data in Armenia in March–June 2019 and 2020: A Cross-Sectional Study
Abstract
:1. Introduction
- To estimate the change of air pollution (SO2, NO2 and dust) in the capital and two regional centers during the full lockdown (16 March–14 May 2020).
- To assess the differences in the values compared with the same period in 2019.
- To take air pollution as a proxy measure for compliance with governmental regulations to find the difference in numbers of new cases of COVID-19 in the capital and in the regional centers.
- How did the air quality change in the observed cities during the lockdown?
- How was the air quality different in March–June 2020 from the same period in 2019?
- What correlation existed between compliance with quarantine restrictions and the spread of COVID-19?
2. Materials and Methods
2.1. Study Setting
2.2. COVID-19-Related Restrictions in Armenia
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Virtual Press Conference on COVID-19—11 March 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-and-final-11mar2020.pdf (accessed on 7 July 2022).
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 7 July 2022).
- World Health Organization. Armenia Situation. Available online: https://covid19.who.int/region/euro/country/am (accessed on 7 July 2022).
- Centers for Disease Control and Prevention. Preventing the Spread of COVID-19 in a Variety of Settings Throughout Your Community. Available online: https://www.cdc.gov/coronavirus/2019-ncov/php/infection-control.html (accessed on 7 July 2022).
- Centers for Disease Control and Prevention. Health Departments: Information on COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/php/index.html (accessed on 7 July 2022).
- European Centre for Disease Prevention and Control. Coronavirus Disease 2019 (COVID-19) Pandemic: Increased Transmission in the EU/EEA and the UK–Seventh Update. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-seventh-update-Outbreak-of-coronavirus-disease-COVID-19.pdf (accessed on 7 July 2022).
- Ferguson, N.M.; Laydon, D.; Nedjati Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunuba Perez, Z.; Cuomo-Dannenburg, G. Report 9: Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID19 Mortality and Healthcare Demand; Imperial College London: London, UK, 2020. [Google Scholar] [CrossRef]
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef]
- Koo, J.R.; Cook, A.R.; Park, M.; Sun, Y.; Sun, H.; Lim, J.T.; Tam, C.; Dickens, B.L. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. Lancet Infect. Dis. 2020, 20, 678–688. [Google Scholar] [CrossRef]
- Markel, H.; Lipman, H.B.; Navarro, J.A. Nonpharmaceutical Interventions Implemented by US Cities During the 1918-1919 Influenza Pandemic. JAMA 2007, 298, 644–654. [Google Scholar] [CrossRef]
- World Health Organization Writing Group. Nonpharmaceutical Interventions for Pandemic Influenza, International Measures. Emerg. Infect. Dis. 2006, 12, 81–94. [Google Scholar] [CrossRef]
- Jackson, C.; Vynnycky, E.; Hawker, J.; Olowokure, B.; Mangtani, P. School closures and influenza: Systematic review of epidemiological studies. BMJ Open 2013, 3, e002149. [Google Scholar] [CrossRef]
- Ferguson, N.M.; Cummings, D.A.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.; Burke, D.S. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005, 437, 209–214. [Google Scholar] [CrossRef]
- World Health Organization. Advice for the Public: Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 10 July 2022).
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 July 2022).
- The COVID Tracking Project. 2 Metrics 7-Day Average Curves. Available online: https://covidtracking.com/data/charts/2-metrics-7-day-average-curves (accessed on 1 August 2022).
- Centers for Disease Control and Prevention. How to Protect Yourself & Others. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html (accessed on 7 July 2022).
- Pearce, K. What Is Social Distancing and How Can It Slow the Spread of COVID-19? Available online: https://hub.jhu.edu/2020/03/13/what-is-social-distancing/ (accessed on 7 July 2022).
- European Environmental Agency. Sources and Emissions of Air Pollutants in Europe. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2021/sources-and-emissions-of-air (accessed on 13 September 2022).
- Arora, S.; Bhaukhandi, K.D.; Mishra, P.K. Coronavirus lockdown helped the environment to bounce back. Sci. Total Environ. 2020, 742, 140573. [Google Scholar] [CrossRef]
- Economic Commission for Latin America and the Caribbean. Effects of the Quarantines and Activity Restrictions Related to the Coronavirus Disease (COVID-19) on Air Quality in Latin America’s Cities. Available online: https://repositorio.cepal.org/handle/11362/45885 (accessed on 27 July 2022).
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.C.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact Assessment of COVID-19 on Variations of SO2, NO2, CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Bui, T.H.; Nguyen, M.K.; Nguyen, T.H.; Vu, V.T.; Pham, H.L. Impact of COVID-19 partial lockdown on PM2.5, SO2, NO2, O3, and trace elements in PM2.5 in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 41875–41885. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Ju, M.J.; Oh, J.; Choi, Y.-H. Changes in air pollution levels after COVID-19 outbreak in Korea. Sci. Total Environ. 2021, 750, 141521. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Zaręba, M.; Danek, T. Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol Air Qual. Res. 2022, 22, 210275. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Caccamo, F.M.; Bertanza, G.; Pedrazzani, R.; Baldi, M.; Ricciardi, P.; Miino, M.C. Can particulate matter be identified as the primary cause of the rapid spread of CoViD-19 in some areas of Northern Italy? Environ. Sci. Pollut. Res. 2021, 28, 33120–33132. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 Event on the Air Quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Aerosol and Air Quality Research. Air Quality in a Changed World: Regional, Ambient, and Indoor Air Concentrations from the COVID to Post-COVID Era. Available online: https://aaqr.org/articles/special-issues/post-covid (accessed on 12 September 2022).
- The World Bank. PM2.5 Air Pollution, Mean Annual Exposure (Micrograms per Cubic Meter)—Armenia. Available online: https://data.worldbank.org/indicator/EN.ATM.PM25.MC.M3?locations=AM (accessed on 10 September 2022).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 12 September 2022).
- IQAir. 2021 World Air Quality Report. Available online: https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2019-en.pdf (accessed on 12 September 2022).
- The World Bank. World Development Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 7 July 2022).
- World Population Review. Yerevan Population 2022. Available online: https://worldpopulationreview.com/world-cities/yerevan-population. (accessed on 9 July 2022).
- Armenia: Sustainable Urban Development Investment Program. Available online: https://www.adb.org/sites/default/files/linked-documents/42417-01-arm-ieeab.pdf (accessed on 9 July 2022).
- Statistical Committee of the Republic of Armenia. Marzes and Yerevan City of the Republic of Armenia in Figures, Kotayk Marz. Available online: https://armstat.am/file/Map/MARZ_07.pdf (accessed on 9 July 2022).
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP: College Station, TX, USA, 2015. [Google Scholar]
- Van Rossum, G. Python Library Reference; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Joshua, N.M. Learning Tableau; PACKT: Birmingham, UK, 2015; ISBN 13-978-1784391164. [Google Scholar]
- Electronic Government of Republic of Armenia. Governmental Decision on the Maximum Allowable Concentrations of Air Pollutants. Available online: https://www.arlis.am/documentview.aspx?docid=22634 (accessed on 9 July 2022).
- United States Environmental Protection Agency. Sulfur Dioxide Basics. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (accessed on 9 July 2022).
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, E.M.; El Bouch, M.; Krombi, M. Impact of COVID-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Zaman, N.A.F.K.; Kaskaoutis, D.G.; Latif, M.T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 2020, 736, 139658. [Google Scholar] [CrossRef]
- Biswas, M.S.; Ghude, S.D.; Gurnale, D.; Prabhakaran, T.; Mahajan, A.S. Simultaneous Observations of Nitrogen Dioxide, Formaldehyde and Ozone in the Indo-Gangetic Plain. Aerosol Air Qual. Res. 2019, 19, 1749–1764. [Google Scholar] [CrossRef]
- Burnett, R.T.; Stieb, D.; Brook, J.R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent, R.; Dann, T. Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch. Environ. Health 2004, 59, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.H.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; et al. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 2015, 15, 10529–10566. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Does Urban Form Affect Urban NO2? Satellite-Based Evidence for More than 1200 Cities. Environ. Sci. Technol. 2017, 51, 12707–12716. [Google Scholar] [CrossRef] [PubMed]
- Bar, S.; Parida, B.R.; Mandal, S.P.; Pandey, A.C.; Kumar, N.; Mishra, B. Impacts of partial to complete COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA. Cities 2021, 117, 103308. [Google Scholar] [CrossRef]
- Cooper, M.J.; Martin, R.V.; Hammer, M.S.; Levelt, P.F.; Veefkind, P.; Lamsal, L.N.; Krotkov, N.A.; Brook, J.R.; McLinden, C.A. Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature 2022, 601, 380–387. [Google Scholar] [CrossRef]
- Benítez-García, S.-E.; Kanda, I.; Wakamatsu, S.; Okazaki, Y.; Kawano, M. Analysis of Criteria Air Pollutant Trends in Three Mexican Metropolitan Areas. Atmosphere 2014, 5, 806–829. [Google Scholar] [CrossRef]
- Koukouli, M.-E.; Skoulidou, I.; Karavias, A.; Parcharidis, I.; Balis, D.; Manders, A.; Segers, A.; Eskes, H.; van Geffen, J. Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19. Atmos. Chem. Phys. 2021, 21, 1759–1774. [Google Scholar] [CrossRef]
- Biswal, A.; Singh, V.; Singh, S.; Kesarkar, A.P.; Ravindra, K.; Sokhi, R.S.; Chipperfield, M.P.; Dhomse, S.S.; Pope, R.J.; Singh, T.; et al. COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations. Atmos. Chem. Phys. 2021, 21, 5235–5251. [Google Scholar] [CrossRef]
- Field, R.D.; Hickman, J.E.; Geogdzhayev, I.V.; Tsigaridis, K.; Bauer, S.E. Changes in satellite retrievals of atmospheric composition over eastern China during the 2020 COVID-19 lockdowns. Atmos. Chem. Phys. 2021, 21, 18333–18350. [Google Scholar] [CrossRef]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 2020, 6, eabc2992. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; Van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Vadrevu, K.P.; Eaturu, A.; Biswas, S.; Lasko, K.; Sahu, S.; Garg, J.K.; Justice, C. Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period. Sci. Rep. 2020, 10, 16574. [Google Scholar] [CrossRef]
- Rana, M.; Mittal, S.K.; Beig, G.; Rana, P. The impact of crop residue burning (CRB) on the diurnal and seasonal variability of the ozone and PM levels at a semi-urban site in the north-western Indo-Gangetic plain. J. Earth Syst. Sci. 2019, 128, 166. [Google Scholar] [CrossRef]
- Kerr, G.H.; Goldberg, D.L.; Anenberg, S.C. COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proc. Natl. Acad. Sci. USA 2021, 118, e2022409118. [Google Scholar] [CrossRef] [PubMed]
- Gas Stoves Can Generate Unsafe Levels of Indoor Air Pollution. Available online: https://www.vox.com/energy-and-environment/2020/5/7/21247602/gas-stove-cooking-indoor-air-pollution-health-risks (accessed on 9 August 2022).
- Danek, T.; Zaręba, M. The Use of Public Data from Low-Cost Sensors for the Geospatial Analysis of Air Pollution from Solid Fuel Heating during the COVID-19 Pandemic Spring Period in Krakow, Poland. Sensors 2021, 21, 5208. [Google Scholar] [CrossRef]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and migration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Yandex Maps. Yandex Self-Isolation Index. Available online: https://yandex.ru/web-maps/covid19 (accessed on 9 July 2022).
- Epidemia COVID-19. Aggiornamento Nazionale 12 Marzo 2020. Istituto Superiore di Sanità, Roma. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_12-marzo-2020.pdf (accessed on 15 July 2022).
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254. [Google Scholar] [CrossRef]
- Dragomir, C.M.; Voiculescu, M.; Constantin, D.-E.; Georgescu, L.P. Prediction of the NO2 concentration data in an urban area using multiple regression and neuronal networks. In Proceedings of the AIP Conference, Timisoara, Romania, 8 December 2015. [Google Scholar]
- Ocak, S.; Turalioglu, F.S. Effect of Meteorology on the Atmospheric Concentrations of Traffic- Related Pollutants in Erzurum, Turkey. J. Int. Environ. Appl. Sci. 2008, 3, 325–335. [Google Scholar]
N | Minimum Concentration | SD | Maximum Concentration | Mean | Median | MAC (mg/m3) | |
---|---|---|---|---|---|---|---|
Dust | 0.15 | ||||||
Yerevan 2019 | 122 | 0.056 | 0.054 | 0.335 | 0.145 | 0.136 | |
Yerevan 2020 | 122 | 0.030 | 0.045 | 0.267 | 0.107 | 0.100 | |
Vanadzor 2019 | 122 | 0.037 | 0.067 | 0.387 | 0.167 | 0.153 | |
Vanadzor 2020 | 122 | 0.118 | 0.074 | 0.606 | 0.247 | 0.235 | |
Hrazdan 2019 | 89 | 0.023 | 0.147 | 0.754 | 0.165 | 0.118 | |
Hrazdan 2020 | 97 | 0.028 | 0.113 | 0.592 | 0.157 | 0.132 | |
Sulfur dioxide (SO2) | 0.05 | ||||||
Yerevan 2019 | 122 | 0.006 | 0.005 | 0.033 | 0.017 | 0.017 | |
Yerevan 2020 | 122 | 0.004 | 0.003 | 0.021 | 0.010 | 0.010 | |
Vanadzor 2019 | 122 | 0.002 | 0.004 | 0.019 | 0.010 | 0.009 | |
Vanadzor 2020 | 122 | 0.003 | 0.006 | 0.035 | 0.010 | 0.008 | |
Hrazdan 2019 | 94 | 0.004 | 0.013 | 0.092 | 0.015 | 0.012 | |
Hrazdan 2020 | 121 | 0.001 | 0.005 | 0.027 | 0.011 | 0.011 | |
Nitrogen dioxide (NO2) | 0.06 | ||||||
Yerevan 2019 | 122 | 0.003 | 0.006 | 0.034 | 0.016 | 0.016 | |
Yerevan 2020 | 122 | 0.016 | 0.010 | 0.055 | 0.032 | 0.032 | |
Vanadzor 2019 | 122 | 0.004 | 0.002 | 0.013 | 0.008 | 0.008 | |
Vanadzor 2020 | 122 | 0.003 | 0.002 | 0.014 | 0.006 | 0.006 | |
Hrazdan 2019 | 99 | 0.000 | 0.005 | 0.021 | 0.005 | 0.004 | |
Hrazdan 2020 | 112 | 0.001 | 0.012 | 0.083 | 0.009 | 0.006 |
Lag Days | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Dust | ||||||||||||||
Spearman’s coefficient Yerevan | −0.33 | −0.33 | −0.29 | −0.30 | −0.30 | −0.27 | −0.25 | −0.26 | −0.30 | −0.25 | −0.22 | −0.21 | −0.20 | −0.24 |
p-Value Yerevan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.01 |
Spearman’s coefficient Hrazdan | −0.14 | −0.24 | −0.12 | −0.18 | −0.25 | −0.25 | −0.25 | −0.24 | −0.25 | −0.33 | −0.30 | −0.33 | −0.24 | −0.21 |
p-Value Hrazdan | 0.12 | 0.01 | 0.18 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 |
Spearman’s coefficient Vanadzor | −0.10 | −0.14 | −0.08 | −0.01 | −0.07 | −0.05 | −0.01 | |||||||
p-Value Vanadzor | 0.26 | 0.13 | 0.36 | 0.94 | 0.49 | 0.56 | 0.94 | |||||||
Sulfur dioxide | ||||||||||||||
Spearman’s coefficient Yerevan | 0.31 | 0.31 | 0.34 | 0.38 | 0.38 | 0.37 | 0.37 | 0.32 | 0.31 | 0.33 | 0.32 | 0.31 | 0.30 | 0.28 |
p-Value Yerevan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Spearman’s coefficient Hrazdan | 0.10 | 0.05 | 0.12 | 0.11 | 0.13 | 0.12 | 0.13 | 0.18 | 0.21 | 0.13 | 0.26 | 0.14 | 0.16 | 0.21 |
p-Value Hrazdan | 0.30 | 0.60 | 0.21 | 0.23 | 0.17 | 0.21 | 0.16 | 0.05 | 0.02 | 0.17 | 0.01 | 0.15 | 0.11 | 0.03 |
Spearman’s coefficient Vanadzor | −0.07 | −0.06 | −0.02 | −0.05 | −0.02 | −0.07 | −0.12 | −0.05 | −0.07 | −0.15 | −0.12 | −0.11 | −0.02 | −0.09 |
p-Value Vanadzor | 0.47 | 0.49 | 0.80 | 0.59 | 0.86 | 0.43 | 0.19 | 0.59 | 0.44 | 0.11 | 0.22 | 0.26 | 0.83 | 0.34 |
Nitrogen dioxide | ||||||||||||||
Spearman’s coefficient Yerevan | 0.04 | 0.07 | 0.08 | 0.10 | 0.10 | 0.14 | 0.18 | 0.16 | 0.17 | 0.19 | 0.18 | 0.19 | 0.18 | 0.20 |
p-Value Yerevan | 0.63 | 0.47 | 0.38 | 0.30 | 0.27 | 0.13 | 0.06 | 0.09 | 0.07 | 0.04 | 0.05 | 0.04 | 0.06 | 0.04 |
Spearman’s coefficient Hrazdan | −0.36 | −0.37 | −0.36 | −0.34 | −0.46 | −0.43 | −0.32 | −0.35 | −0.37 | −0.36 | −0.41 | −0.36 | −0.30 | −0.41 |
p-Value Hrazdan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Spearman’s coefficient Vanadzor | −0.07 | −0.09 | −0.11 | −0.08 | −0.11 | −0.13 | −0.03 | |||||||
p-Value Vanadzor | 0.48 | 0.33 | 0.23 | 0.41 | 0.23 | 0.17 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargsyan, A.; Galstyan, N.; Nahatakyan, H.; Morales-Suárez-Varela, M.M. Assessment of Lockdown Effectiveness during COVID-19 Pandemic Using Air Pollution Data in Armenia in March–June 2019 and 2020: A Cross-Sectional Study. Atmosphere 2022, 13, 1563. https://doi.org/10.3390/atmos13101563
Sargsyan A, Galstyan N, Nahatakyan H, Morales-Suárez-Varela MM. Assessment of Lockdown Effectiveness during COVID-19 Pandemic Using Air Pollution Data in Armenia in March–June 2019 and 2020: A Cross-Sectional Study. Atmosphere. 2022; 13(10):1563. https://doi.org/10.3390/atmos13101563
Chicago/Turabian StyleSargsyan, Aelita, Narek Galstyan, Hamazasp Nahatakyan, and Maria Manuela Morales-Suárez-Varela. 2022. "Assessment of Lockdown Effectiveness during COVID-19 Pandemic Using Air Pollution Data in Armenia in March–June 2019 and 2020: A Cross-Sectional Study" Atmosphere 13, no. 10: 1563. https://doi.org/10.3390/atmos13101563
APA StyleSargsyan, A., Galstyan, N., Nahatakyan, H., & Morales-Suárez-Varela, M. M. (2022). Assessment of Lockdown Effectiveness during COVID-19 Pandemic Using Air Pollution Data in Armenia in March–June 2019 and 2020: A Cross-Sectional Study. Atmosphere, 13(10), 1563. https://doi.org/10.3390/atmos13101563