Spatio-Temporal Prediction of Ground-Level Ozone Concentration Based on Bayesian Maximum Entropy by Combining Monitoring and Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. O3 Monitoring Data
2.3. O3 Satellite Data
2.4. BME Analysis
2.5. Validation
2.6. Uncertainty Analysis of O3 Concentration Estimations
3. Results
3.1. Descriptive Statistics
3.2. Correlation Analysis between O3 Monitoring and Satellite Data
3.3. O3 Daily Exposure
3.3.1. Covariance Model Fitting
3.3.2. Validation Results
3.3.3. O3 Daily Exposure Level
3.4. O3 One-Year Exposure
3.4.1. Covariance Model Fitting
3.4.2. Validation Results
3.4.3. O3 One-Year Exposure Level
3.5. Uncertainty Analysis and Comparisons with NAAQS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, B.; Niu, Y.Y.; Du, R.G.; Yu, Z.F.; Ying, F.; Xu, H.H.; Hong, S.M.; Yang, H.Q. Characteristics of surface ozone concentration in urban site of Hangzhou. China Environ. Sci. 2017, 37, 443–451. (In Chinese) [Google Scholar]
- Chen, B.; Yang, X.B.; Xu, J.J. Spatio-temporal variation and influencing factors of ozone pollution in Beijing. Atmosphere 2022, 13, 359. [Google Scholar] [CrossRef]
- Rich, D.Q.; Balmes, J.R.; Frampton, M.W.; Zareba, W.; Stark, P.; Arjomandi, M.; Hazucha, M.J.; Costantini, M.G.; Ganz, P.; Hollenbeck-Pringle, D.; et al. Cardiovascular function and ozone exposure: The multicenter ozone study in older subjects (moses). Environ. Int. 2018, 119, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.J.; Niu, Y.; Cai, J.; Lin, Z.J.; Liu, C.; Li, H.C.; Chen, C.; Song, W.M.; Zhao, Z.H.; Chen, R.J.; et al. Effects of personal short-term exposure to ambient ozone on blood pressure and vascular endothelial function: A mechanistic study based on DNA methylation and metabolomics. Environ. Sci. Technol. 2018, 52, 12774–12782. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Ma, Y.Q.; Liu, R.Y.; Shao, Y.C.; Ma, Z.W.; Zhou, L.; Jing, Y.S.; Bell, M.L.; Chen, K. Associations between short-term ambient ozone exposure and cause-specific mortality in rural and urban areas of Jiangsu, China. Environ. Res. 2022, 211, 113098. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, G.; Smith, A. Uncertainty in the estimated risk of lung function decrements owing to ozone exposure. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 535–538. [Google Scholar] [CrossRef]
- Huang, J.; Li, G.X.; Xu, G.Z.; Qian, X.J.; Zhao, Y.; Pan, X.C.; Huang, J.; Cen, Z.D.; Liu, Q.C.; He, T.F.; et al. The burden of ozone pollution on years of life lost from chronic obstructive pulmonary disease in a city of Yangtze River Delta, China. Environ. Pollut. 2018, 242, 1266–1273. [Google Scholar] [CrossRef]
- Zhou, P.E.; Qian, Z.M.; McMillin, S.E.; Vaughn, M.G.; Xie, Z.Y.; Xu, Y.J.; Lin, L.Z.; Hu, L.W.; Yang, B.Y.; Zeng, X.W.; et al. Relationships between long-term ozone exposure and allergic rhinitis and bronchitic symptoms in Chinese children. Toxics 2021, 9, 221. [Google Scholar] [CrossRef]
- Zu, K.; Liu, X.B.; Shi, L.H.; Tao, G.; Loftus, C.T.; Lange, S.; Goodman, J.E. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas. Environ. Int. 2017, 104, 139–145. [Google Scholar] [CrossRef]
- Cleary, E.G.; Cifuentes, M.; Grinstein, G.; Brugge, D.; Shea, T.B. Association of low-level ozone with cognitive decline in older adults. J. Alzheimers Dis. 2018, 61, 67–78. [Google Scholar] [CrossRef]
- Gao, Q.; Zang, E.M.; Bi, J.; Dubrow, R.; Lowe, S.R.; Chen, H.S.; Zeng, Y.; Shi, L.H.; Chen, K. Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study. Environ. Int. 2022, 160, 107072. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.R.; Lin, Y.T.; Hwang, B.F. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan. J. Alzheimers Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, S.; Xue, B.R.; Lv, Z.F.; Meng, Z.H.; Yang, X.F.; Xue, T.; Yu, Q.; He, K.B. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Shindell, D.T.; Malley, C.S. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China. Environ. Res. Lett. 2018, 13, 104018. [Google Scholar] [CrossRef]
- Feng, Z.Z.; De Marco, A.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.Q.; Fornasier, F.; Tao, F.L.; Guo, A.H.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Feng, Z.Z.; Catalayud, V.; Yuan, X.Y.; Xu, Y.S.; Paoletti, E. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ. 2017, 40, 2369–2380. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of the people’s Republic of China. Bulletin of the State of the Environment in China for Year 2018. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201905/P020190619587632630618.pdf (accessed on 27 July 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the State of the Environment in China for Year 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf (accessed on 27 July 2022).
- Liang, S.; Li, X.; Teng, Y.; Fu, H.; Chen, L.; Mao, J.; Zhang, H.; Gao, S.; Sun, Y.; Ma, Z.; et al. Estimation of health and economic benefits based on ozone exposure level with high spatial-temporal resolution by fusing satellite and station observations. Environ. Pollut. 2019, 255, 113267. [Google Scholar] [CrossRef]
- Chen, L.; Gao, S.; Zhang, H.; Sun, Y.L.; Ma, Z.X.; Vedal, S.; Mao, J.; Bai, Z.P. Spatiotemporal modeling of PM2.5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China. Environ. Int. 2018, 116, 300–307. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 2003, 108, 8809. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Boersma, K.F.; Jaffe, D.A.; Olson, J.R.; Bowman, K.W.; Worden, J.R.; Thompson, A.M.; Avery, M.A.; Cohen, R.C.; et al. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: An integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos. Chem. Phys. 2008, 8, 6117–6136. [Google Scholar] [CrossRef]
- Wang, J.W.; Cohan, D.S.; Xu, H. Spatiotemporal ozone pollution LUR models: Suitable statistical algorithms and time scales for a megacity scale. Atmos. Environ. 2020, 237, 117671. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Guan, Q.Y.; Lin, J.K.; Yang, L.Q.; Luo, H.P.; Wang, N. A new buffer selection strategy for Land use regression model of PM2.5 in Xi’an, China. Environ. Sci. Pollut. Res. 2021, 28, 21245–21255. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.F.; Fu, Q.Y.; Zhang, Y.; Liu, Y.; Kan, H.D. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Muttoo, S.; Ramsay, L.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R.N. Land use regression modeling estimating nitrogen oxides exposure in industrial South Durban, South Africa. Sci. Total Environ. 2018, 610, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Yeganeh, B.; Clifford, S.; Knibbs, L.D.; Morawska, L. Development of a Land use regression model for daily NO2 and NOx concentrations in the Brisbane metropolitan area, Australia. Environ. Model. Softw. 2017, 95, 168–179. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Ren, X.; Mi, Z.; Georgopoulos, P.G. Comparison of machine learning and land use regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous united states. Environ. Int. 2020, 142, 105827. [Google Scholar] [CrossRef]
- Konakoglu, B.; Akar, A. Prediction of geoid undulation using approaches based on GMDH, M5 model tree, MARS, GPR, and IDP. Acta Geod. Geophys. 2022, 57, 293–315. [Google Scholar] [CrossRef]
- Keshtegar, B.; Mert, C.; Kisi, O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew. Sustain. Energy Rev. 2018, 81, 330–341. [Google Scholar] [CrossRef]
- Gholampour, A.; Mansouri, I.; Kisi, O.; Ozbakkaloglu, T. Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Comput. Appl. 2020, 32, 295–308. [Google Scholar] [CrossRef]
- Deo, R.C.; Kisi, O.; Singh, V.P. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 2017, 184, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O.; Khosravinia, P.; Nikpour, M.R.; Sanikhani, H. Hydrodynamics of river-channel confluence: Toward modeling separation zone using GEP, MARS, M5 Tree and DENFIS techniques. Stoch. Environ. Res. Risk Assess. 2019, 33, 1089–1107. [Google Scholar] [CrossRef]
- Qin, Q.Q.; Wang, H.Y.; Lei, X.D.; Li, X.; Xie, Y.L.; Zheng, Y.L. Spatial variability in the amount of forest litter at the local scale in northeastern China: Kriging and cokriging approaches to interpolation. Ecol. Evol. 2020, 10, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Luo, Y.Q.; Wan, N.; Zheng, Z.; Sternberg, T.; Liao, Y.L. Performance comparison of LUR and OK in PM2.5 concentration mapping: A multidimensional perspective. Sci. Rep. 2015, 5, 8698. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhang, X.Y. Ozone spatial-temporal distribution and trend over China since 2013: Insight from satellite and surface observation. Environ. Sci. 2019, 40, 1132–1142. [Google Scholar]
- Cleland, S.E.; West, J.J.; Jia, Y.Q.; Reid, S.; Raffuse, S.; O’Neill, S.; Serre, M.L. Estimating wildfire smoke concentrations during the October 2017 California fires through BME space/time data fusion of observed, modeled, and satellite-derived PM2.5. Environ. Sci. Technol. 2020, 54, 13439–13447. [Google Scholar] [CrossRef]
- Hayunga, D.K.; Kolovos, A. Geostatistical space-time mapping of house prices using Bayesian maximum entropy. Int. J. Geogr. Inf. Sci. 2016, 30, 2339–2354. [Google Scholar] [CrossRef]
- Xu, Y.D.; Serre, M.L.; Reyes, J.; Vizuete, W. Bayesian maximum entropy integration of ozone observations and model predictions: A national application. Environ. Sci. Technol. 2016, 50, 4393–4400. [Google Scholar] [CrossRef]
- Ellison, A.M. Bayesian inference in ecology. Ecol. Lett. 2004, 7, 509–520. [Google Scholar] [CrossRef]
- DeLang, M.N.; Becker, J.S.; Chang, K.L.; Serre, M.L.; Cooper, O.R.; Schultz, M.G.; Schroder, S.; Lu, X.; Zhang, L.; Deushi, M.; et al. Mapping yearly fine resolution global surface ozone through the Bayesian maximum entropy data fusion of observations and model output for 1990-2017. Environ. Sci. Technol. 2021, 55, 4389–4398. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Masters, P. Profiting from prior information in Bayesian analyses of ecological data. J. Appl. Ecol. 2005, 42, 1012–1019. [Google Scholar] [CrossRef]
- Yu, H.L.; Chen, J.C.; Christakos, G.; Jerrett, M. BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ. Health Perspect. 2009, 117, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.T.; Christakos, G. Space-time mapping of ground-level PM2.5 and NO2 concentrations in heavily polluted northern China during winter using the Bayesian maximum entropy technique with satellite data. Air Qual. Atmos. Health 2018, 11, 23–33. [Google Scholar] [CrossRef]
- He, J.Y.; Kolovos, A. Bayesian maximum entropy approach and its applications: A review. Stoch. Environ. Res. Risk Assess. 2018, 32, 859–877. [Google Scholar] [CrossRef]
- Christakos, G.; Serre, M.L. BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos. Environ. 2000, 34, 3393–3406. [Google Scholar] [CrossRef]
- Bogaert, P.; Christakos, G.; Jerrett, M.; Yu, H.L. Spatiotemporal modelling of ozone distribution in the state of California. Atmos. Environ. 2009, 43, 2471–2480. [Google Scholar] [CrossRef]
- De Nazelle, A.; Arunachalam, S.; Serre, M.L. Bayesian maximum entropy integration of ozone observations and model predictions: An application for attainment demonstration in North Carolina. Environ. Sci. Technol. 2010, 44, 5707–5713. [Google Scholar] [CrossRef]
- Chen, L.; Liang, S.; Li, X.L.; Mao, J.; Gao, S.; Zhang, H.; Sun, Y.L.; Vedal, S.; Bai, Z.P.; Ma, Z.X.; et al. A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using Land use regression and Bayesian maximum entropy. Sci. Total Environ. 2021, 752, 141780. [Google Scholar] [CrossRef]
- Mei, Y.Y.; Li, J.Y.; Xiang, D.P.; Zhang, J.X. When a generalized linear model meets Bayesian maximum entropy: A novel spatiotemporal ground-level ozone concentration retrieval method. Remote Sens. 2021, 13, 4324. [Google Scholar] [CrossRef]
- NASA. Ozone Monitoring Instrument (OMI) Data User’s Guide. 2012. Available online: https://docserver.gesdisc.eosdis.nasa.gov//repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.2_ProductRequirements_Designs/README.OMI_DUG.pdf (accessed on 27 July 2022).
- Liu, X.Z.; Lou, S.R.; Chen, Y.H.; Liu, Q.; Wang, J.; Shan, Y.Y.; Huang, S.J.; Du, H.J. Spatiotemporal distribution of ground-level ozone in mid-east China based on OMI observations. Acta Sci. Circumstantiae 2016, 36, 2811–2818. (In Chinese) [Google Scholar]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf (accessed on 27 July 2022).
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.M.; Li, Y.X.; Shi, N.F.; Su, Y. Spatio-temporal change characteristics of ozone concentration in Beijing-Tianjin-Hebei region. Environ. Sci. Technol. 2019, 42, 1–7+39. (In Chinese) [Google Scholar]
- Wang, Z.B.; Li, J.X.; Liang, L.W. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei urban agglomeration. Environ. Pollut. 2020, 256, 113419. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Sebastian, R.; Petros, K.; Joel, S. A hybrid model for spatially and temporally resolved ozone exposures in the continental united states. J. Air Waste Manag. Assoc. 2017, 67, 39–52. [Google Scholar]
- Lyu, Y.; Ju, Q.R.; Lv, F.M.; Feng, J.L.; Pang, X.B.; Li, X. Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, C.; Bi, J. Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China. Environ. Res. 2017, 158, 542–552. [Google Scholar] [CrossRef]
- Fan, Z.R.; Huang, B.H.; Peng, C.; Lin, J.Y.; Liao, Y.L. Simulation of average monthly ozone exposure concentrations in China: A temporal and spatial estimation method. Environ. Res. 2021, 199, 111271. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.Z.; Deng, X.F.; Grieneisen, M.L.; Zhang, M.H.; Di, B.F. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef]
- Zhang, A.; Lin, J.H.; Chen, W.H.; Lin, M.S.; Lei, C.C. Spatial-temporal distribution variation of ground-level ozone in China’s Pearl River Delta metropolitan region. Int. J. Environ. Res. Public Health 2021, 18, 872. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, M.X.; Song, J.Y. Spatiotemporal variations and influent factors of tropospheric ozone concentration over China based on OMI data. Atmosphere 2022, 13, 253. [Google Scholar] [CrossRef]
- Meng, X.; Wang, W.D.; Shi, S.; Zhu, S.Q.; Wang, P.; Chen, R.J.; Xiao, Q.Y.; Tao, X.; Geng, G.N.; Zhang, Q.; et al. Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in mainland China, 2013–2019. Environ. Pollut. 2022, 299, 118865. [Google Scholar] [CrossRef] [PubMed]
- Beijing Bureau of Statistics of China. Beijing Statistical Year Book 2021; China Statistics Press: Beijing, China, 2021; Available online: http://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/indexch.htm (accessed on 27 July 2022).
- Hebei Bureau of Statistics of China. Hebei Statistical Year Book 2021; China Statistics Press: Hebei, China, 2021; Available online: http://tjj.Hebei.Gov.Cn/hetj/tjnj/2021/zk/indexch.htm (accessed on 27 July 2022).
- Tianjin Bureau of Statistics of China. Tianjin Statistical Year Book 2021; China Statistics Press: Tianjin, China, 2021; Available online: http://stats.tj.gov.cn/nianjian/2021nj/zk/indexch.htm (accessed on 27 July 2022).
- Dueñas, C.; Fernández, M.C.; Cañete, S.; Carretero, J.; Liger, E. Assessment of ozone variations and meteorological effects in an urban area in the mediterranean coast. Sci. Total Environ. 2002, 299, 97–113. [Google Scholar] [CrossRef]
- Shan, W.; Yin, Y.; Zhang, J.; Ding, Y. Observational study of surface ozone at an urban site in east China. Atmos. Res. 2008, 89, 252–261. [Google Scholar] [CrossRef]
- Toh, Y.Y.; Lim, S.F.; Glasow, R.V. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah rata, Malaysia. Atmos. Environ. 2013, 70, 435–446. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.-G.; Wang, H.; Li, W. Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos. Res. 2007, 85, 310–337. [Google Scholar] [CrossRef]
- Allu, S.K.; Srinivasan, S.; Maddala, R.K.; Reddy, A.; Anupoju, G.R. Seasonal ground level ozone prediction using multiple linear regression (MLR) model. Modeling Earth Syst. Environ. 2020, 6, 1981–1989. [Google Scholar] [CrossRef]
- Gao, C.; Xiu, A.J.; Zhang, X.L.; Chen, W.W.; Liu, Y.; Zhao, H.M.; Zhang, S.C. Spatiotemporal characteristics of ozone pollution and policy implications in northeast China. Atmos. Pollut. Res. 2020, 11, 357–369. [Google Scholar] [CrossRef]
- Yu, R.L.; Lin, Y.L.; Zou, J.H.; Dan, Y.B.; Cheng, C. Review on atmospheric ozone pollution in China: Formation, spatiotemporal distribution, precursors and affecting factors. Atmosphere 2021, 12, 1675. [Google Scholar] [CrossRef]
Validation Method | R2 | RMSE | MAE | MPE | ME |
---|---|---|---|---|---|
Leave-one-out | 0.81 | 19.58 | 14.38 | −0.031 | −1.682 |
Leave-city-out | 0.83 | 17.12 | 12.48 | −0.023 | −2.685 |
Validation Method | R2 | RMSE | MAE | MPE | ME |
---|---|---|---|---|---|
Leave-one-out | 0.69 | 4.40 | 2.60 | −0.005 | −0.505 |
Leave-city-out | 0.61 | 2.54 | 2.14 | −0.002 | −0.191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Cui, C.; Shan, M.; Liu, Y.; Qiao, Z.; Chen, L.; Ma, Z.; Zhang, H.; Gao, S.; Sun, Y. Spatio-Temporal Prediction of Ground-Level Ozone Concentration Based on Bayesian Maximum Entropy by Combining Monitoring and Satellite Data. Atmosphere 2022, 13, 1568. https://doi.org/10.3390/atmos13101568
Xu S, Cui C, Shan M, Liu Y, Qiao Z, Chen L, Ma Z, Zhang H, Gao S, Sun Y. Spatio-Temporal Prediction of Ground-Level Ozone Concentration Based on Bayesian Maximum Entropy by Combining Monitoring and Satellite Data. Atmosphere. 2022; 13(10):1568. https://doi.org/10.3390/atmos13101568
Chicago/Turabian StyleXu, Shiwen, Chen Cui, Mei Shan, Yaxin Liu, Zequn Qiao, Li Chen, Zhenxing Ma, Hui Zhang, Shuang Gao, and Yanling Sun. 2022. "Spatio-Temporal Prediction of Ground-Level Ozone Concentration Based on Bayesian Maximum Entropy by Combining Monitoring and Satellite Data" Atmosphere 13, no. 10: 1568. https://doi.org/10.3390/atmos13101568
APA StyleXu, S., Cui, C., Shan, M., Liu, Y., Qiao, Z., Chen, L., Ma, Z., Zhang, H., Gao, S., & Sun, Y. (2022). Spatio-Temporal Prediction of Ground-Level Ozone Concentration Based on Bayesian Maximum Entropy by Combining Monitoring and Satellite Data. Atmosphere, 13(10), 1568. https://doi.org/10.3390/atmos13101568