Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observational Dataset
2.2. A Framework of EFS and Model Configurations
2.3. A Visibility-Based Diagnostic Method for Fog Prediction
2.4. Forecast Skill Verification Methods
3. Result and Discussions
3.1. The 19–20 January 2022 Fog Case
3.2. Skill Verification of Single Deterministic Forecast Versus Ensemble-Based Forecasts
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.; Kant, S. Radiation Fog over North India during Winter from 1989–2004. Mausam 2006, 57, 271–290. [Google Scholar] [CrossRef]
- Jenamani, R.K. Micro-Climatic Study and Trend Analysis of Fog Characteristics at IGI Airport New Delhi Using Hourly Data (1981–2005). Mausam 2012, 63, 203–218. [Google Scholar] [CrossRef]
- Kutty, S.G.; Dimri, A.P.; Gultepe, I. Climatic Trends in Fog Occurrence over the Indo-Gangetic Plains. Int. J. Climatol. 2019, 40, 2048–2061. [Google Scholar] [CrossRef]
- Ghude, S.D.; Bhat, G.S.; Prabhakaran, T.; Jenamani, R.K.; Chate, D.M.; Safai, P.D.; Karipot, A.K.; Konwar, M.; Pithani, P.; Sinha, V.; et al. Winter Fog Experiment over the Indo-Gangetic Plains of India. Curr. Sci. 2017, 112, 767–784. [Google Scholar] [CrossRef]
- Dhangar, N.G.; Parde, A.N.; Ahmed, R.; Prasad, D.S.V.V.; Lal, D.M. Fog Nowcasting over the IGI Airport, New Delhi, India Using Decision Tree. Mausam 2022, 4, 785–794. [Google Scholar]
- Dietz, S.J.; Kneringer, P.; Mayr, G.J.; Zeileis, A. Forecasting Low-Visibility Procedure States with Tree-Based Statistical Methods. Pure Appl. Geophys. 2019, 176, 2631–2644. [Google Scholar] [CrossRef]
- Lindner, B.L.; Mohlin, P.J.; Caulder, A.C.; Neuhauser, A. Development and Testing of a Decision Tree for the Forecasting of Sea Fog Along the Georgia and South Carolina Coast. J. Oper. Meteorol. 2018, 6, 47–58. [Google Scholar] [CrossRef]
- Marzban, C.; Leyton, S.; Colman, B. Ceiling and Visibility Forecasts via Neural Networks. Weather Forecast. 2007, 22, 466–479. [Google Scholar] [CrossRef]
- Colabone, R.d.O.; Ferrari, A.L.; Vecchia, F.A.d.S.; Tech, A.R.B. Application of Artificial Neural Networks for Fog Forecast. J. Aerosp. Technol. Manag. 2015, 7, 240–246. [Google Scholar] [CrossRef]
- Ribaud, J.F.; Haeffelin, M.; Dupont, J.C.; Drouin, M.A.; Toledo, F.; Kotthaus, S. PARAFOG v2.0: A near-Real-Time Decision Tool to Support Nowcasting Fog Formation Events at Local Scales. Atmos. Meas. Tech. 2021, 14, 7893–7907. [Google Scholar] [CrossRef]
- Mitra, A.K.; Nath, S.; Sharma, A.K. Fog Forecasting Using Rule-Based Fuzzy Inference System. J. Indian Soc. Remote Sens. 2008, 36, 243–253. [Google Scholar] [CrossRef]
- Bari, D. Visibility Prediction Based on Kilometric NWP Model Outputs Using Machine-Learning Regression. In Proceedings of the IEEE 14th International Conference on eScience, e-Science, Amsterdam, The Netherlands, 29 October–1 November 2018. [Google Scholar]
- Bari, D.; Ouagabi, A. Machine-Learning Regression Applied to Diagnose Horizontal Visibility from Mesoscale NWP Model Forecasts. SN Appl. Sci. 2020, 2, 556. [Google Scholar] [CrossRef]
- Dewi, R.; Prawito; Harsa, H. Fog Prediction Using Artificial Intelligence: A Case Study in Wamena Airport. J. Phys. Conf. Ser. 2020, 1528, 012021. [Google Scholar] [CrossRef]
- Castillo-Botón, C.; Casillas-Pérez, D.; Casanova-Mateo, C.; Ghimire, S.; Cerro-Prada, E.; Gutierrez, P.A.; Deo, R.C.; Salcedo-Sanz, S. Machine Learning Regression and Classification Methods for Fog Events Prediction. Atmos. Res. 2022, 272, 106157. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Chennu, V.N.; Kulkarni, R.G.; Steeneveld, G.J.; Sharma, A.; Prabhakaran, T.; Chate, D.M.; Gultepe, I.; Jenamani, R.K.; et al. WRF Model Prediction of a Dense Fog Event Occurred During the Winter Fog Experiment (WIFEX). Pure Appl. Geophys. 2019, 176, 1827–1846. [Google Scholar] [CrossRef]
- Yadav, P.; Parde, A.N.; Dhangar, N.G.; Govardhan, G.; Lal, D.M.; Wagh, S.; Prasad, D.S.V.V.D.; Ahmed, R.; Ghude, S.D. Understanding Genesis of a Dense Fog Event over Delhi Using Observations and High-Resolution Model Experiments. Model. Earth Syst. Environ. 2022, 136, 1–12. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Bound. Layer Meteorol. 2014, 154, 265–289. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Prabhakaran, T.; Karipot, A.; Hazra, A.; Kulkarni, R.; Chowdhuri, S.; Resmi, E.A.; Konwar, M.; Murugavel, P.; et al. WRF Model Sensitivity to Choice of PBL and Microphysics Parameterization for an Advection Fog Event at Barkachha, Rural Site in the Indo-Gangetic Basin, India. Theor. Appl. Climatol. 2019, 136, 1099–1113. [Google Scholar] [CrossRef]
- Kutty, S.G.; Dimri, A.P.; Gultepe, I. Physical Processes Affecting Radiation Fog Based on WRF Simulations and Validation. Pure Appl. Geophys. 2021, 178, 4265–4288. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; de Bode, M. Unravelling the Relative Roles of Physical Processes in Modelling the Life Cycle of a Warm Radiation Fog. Q. J. R. Meteorol. Soc. 2018, 144, 1539–1554. [Google Scholar] [CrossRef]
- Pagowski, M.; Gultepe, I.; King, P. Analysis and Modeling of an Extremely Dense Fog Event in Southern Ontario. J. Appl. Meteorol. 2004, 43, 3–16. [Google Scholar] [CrossRef]
- Spirig, R.; Vogt, R.; Larsen, J.A.; Feigenwinter, C.; Wicki, A.; Franceschi, J.; Parlow, E.; Adler, B.; Kalthoff, N.; Cermak, J.; et al. Probing the Fog Life Cycles in the Namib Desert. Bull. Am. Meteorol. Soc. 2019, 100, 2491–2507. [Google Scholar] [CrossRef]
- Parde, A.N.; Ghude, S.D.; Sharma, A.; Dhangar, N.G.; Govardhan, G.; Wagh, S.; Jenamani, R.K.; Pithani, P.; Chen, F.; Rajeevan, M.; et al. Improving Simulation of the Fog Life Cycle with High-Resolution Land Data Assimilation: A Case Study from WiFEX. Atmos. Res. 2022, 278, 106331. [Google Scholar] [CrossRef]
- Price, J.D.; Lane, S.; Boutle, I.A.; Smith, D.K.E.; Bergot, T.; Lac, C.; Duconge, L.; McGregor, J.; Kerr-Munslow, A.; Pickering, M.; et al. LANFEX : A Field and Modeling Study to Improve Our Understanding and Forecasting of Radiation Fog. Bull. Am. Meteorol. Soc. 2018, 99, 2061–2077. [Google Scholar] [CrossRef]
- Haeffelin, M.; Bergot, T.; Elias, T.; Tardif, R.; Carrer, D.; Chazette, P.; Colomb, M.; Drobinski, P.; Dupont, E.; Dupont, J.C.; et al. PARISFOG: Shedding New Light on Fog Physical Processes. Bull. Am. Meteorol. Soc. 2010, 91, 767–783. [Google Scholar] [CrossRef]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The Fog Remote Sensing and Modeling Field Project. Bull. Am. Meteorol. Soc. 2009, 90, 341–360. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Gultepe, I.; Dorman, C.; Pardyjak, E.; Wang, Q.; Hoch, S.; Richter, D.; Creegan, E.; Gaberšek, S.; Bullock, T.; et al. C-FOG: Life of Coastal Fog. Bull. Am. Meteorol. Soc. 2021, 102, E244–E272. [Google Scholar] [CrossRef]
- Wagh, S.; Krishnamurthy, R.; Wainwright, C.; Wang, S.; Dorman, C.E.; Fernando, H.J.S.; Gultepe, I. Study of Stratus-Lowering Marine-Fog Events Observed During C-FOG. Bound. Layer Meteorol. 2021, 181, 317–344. [Google Scholar] [CrossRef]
- Jayakumar, A.; Rajagopal, E.N.; Boutle, I.A.; George, J.P.; Mohandas, S.; Webster, S.; Aditi, S. An Operational Fog Prediction System for Delhi Using the 330 m Unified Model. Atmos. Sci. Lett. 2018, 19, e796. [Google Scholar] [CrossRef]
- Bott, A.; Trautmann, T. PAFOG—A New Efficient Forecast Model of Radiation Fog and Low-Level Stratiform Clouds. Atmos. Res. 2002, 64, 191–203. [Google Scholar] [CrossRef]
- Bergot, T.; Koracin, D. Observation, Simulation and Predictability of Fog: Review and Perspectives. Atmosphere 2021, 12, 235. [Google Scholar] [CrossRef]
- Bergot, T.; Carrer, D.; Noilhan, J.; Bougeault, P. Improved Site-Specific Numerical Prediction of Fog and Low Clouds: A Feasibility Study. Weather Forecast. 2005, 20, 627–646. [Google Scholar] [CrossRef]
- Pithani, P.; Ghude, S.D.; Jenamani, R.K.; Biswas, M.; Naidu, C.V.; Debnath, S.; Kulkarni, R.; Dhangar, N.G.; Jena, C.; Hazra, A.; et al. Real-Time Forecast Of Dense Fog Events Over Delhi: The Performance Of The WRF Model During WiFEX Field Campaign. Weather Forecast. 2020, 35, 739–756. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. The Predictability of a Flow Which Possesses Many Scales of Motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Leith, C.E. Theoretical Skill of Monte Carlo Forecasts. Mon. Weather Rev. 1974, 102, 409–418. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble Forecasting at NMC: The Generation of Perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and Validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Lefaivre, L. Using Ensemble Forecasts for Model Validation. Mon. Weather Rev. 1997, 125, 2416–2426. [Google Scholar] [CrossRef]
- Buizza, R.; Leutbecher, M.; Isaksen, L. Potential Use of an Ensemble of Analyses in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 2008, 134, 2051–2066. [Google Scholar] [CrossRef]
- Rao, S.A.; Goswami, B.N.; Sahai, A.K.; Rajagopal, E.N.; Mukhopadhyay, P.; Rajeevan, M.; Nayak, S.; Rathore, L.S.; Shenoi, S.S.C.; Ramesh, K.J.; et al. Monsoon Mission a Targeted Activity to Improve Monsoon Prediction across Scales. Bull. Am. Meteorol. Soc. 2019, 100, 2509–2532. [Google Scholar] [CrossRef]
- Dube, A.; Ashrit, R.; Singh, H.; Arora, K.; Iyengar, G.; Rajagopal, E.N. Evaluating the Performance of Two Global Ensemble Forecasting Systems in Predicting Rainfall over India during the Southwest Monsoons. Meteorol. Appl. 2017, 24, 230–238. [Google Scholar] [CrossRef]
- Roquelaure, S.; Bergot, T. A Local Ensemble Prediction System for Fog and Low Clouds: Construction, Bayesian Model Averaging Calibration, and Validation. J. Appl. Meteorol. Climatol. 2008, 47, 3072–3088. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System. Weather Forecast. 2010, 25, 303–322. [Google Scholar] [CrossRef]
- Pahlavan, R.; Moradi, M.; Tajbakhsh, S.; Azadi, M.; Rahnama, M. Fog Probabilistic Forecasting Using an Ensemble Prediction System at Six Airports in Iran for 10 Fog Events. Meteorol. Appl. 2021, 28, e2033. [Google Scholar] [CrossRef]
- Dhangar, N.G.; Lal, D.M.; Ghude, S.D.; Kulkarni, R.; Parde, A.N.; Pithani, P.; Niranjan, K.; Prasad, D.S.V.V.D.; Jena, C.; Sajjan, V.S.; et al. On the Conditions for Onset and Development of Fog Over New Delhi: An Observational Study from the WiFEX. Pure Appl. Geophys. 2021, 178, 3727–3746. [Google Scholar] [CrossRef]
- Deshpande, M.; Kanase, R.; Phani Murali Krishna, R.; Tirkey, S.; Mukhopadhyay, P.; Prasad, V.S.; Johny, C.J.; Durai, V.R.; Devi, S.; Mohapatra, M. Global Ensemble Forecast System (Gefs T1534) Evaluation for Tropical Cyclone Prediction over the North Indian Ocean. Mausam 2021, 72, 119–128. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Gultepe, I.; Müller, M.D.; Boybeyi, Z. A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models. J. Appl. Meteorol. Climatol. 2006, 45, 1469–1480. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.A. Scale Effects on Averaging of Cloud Droplet and Aerosol Number Concentrations: Observations and Models. J. Clim. 1999, 12, 1268–1279. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A. Probabilistic Parameterizations of Visibility Using Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteorol. Climatol. 2010, 49, 1268–1279. [Google Scholar] [CrossRef]
- Wagh, S.; Kulkarni, R.; Lonkar, P.; Parde, A.N.; Dhangar, N.G. Development of Visibility Equation Based on Fog Microphysical Observations and Its Verification Using the WRF Model. Model. Earth Syst. Environ. 2022, 1–17. [Google Scholar] [CrossRef]
- Wagh, S.; Singh, P.; Ghude, S.D.; Safai, P.; Prabhakaran, T.; Kumar, P.P. Study of Ice Nucleating Particles in Fog-Haze Weather at New Delhi, India: A Case of Polluted Environment. Atmos. Res. 2021, 259, 105693. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of Forecasts Expressed in Terms of Probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 14. [Google Scholar]
Sr. No. | Date | Observed Vis < 500 m Time (UTC) | CAT IIIC (0 m < Vis < 49 m) | CAT IIIB (50 m < Vis < 174 m) | CAT IIIA (175 m < Vis < 299 m) | CAT I and CAT II (300 < Vis < 549 m) | Model Forecast Available (Y/N) | |
---|---|---|---|---|---|---|---|---|
Onset–Lifting Fog Hour | Total Fog Hours | |||||||
1 | 06–07 Dec 2020 | 20:00–05:00 | 09:00 | 4 | 2 | - | 3 | Y |
2 | 07–08 Dec 2020 | 00:00–05:00 | 05:00 | - | - | - | 5 | N |
3 | 12–13 Dec 2020 | 19:00–22:00 | 03:00 | - | - | 1 | 2 | Y |
4 | 15–16 Dec 2020 | 00:00–05:00 | 05:00 | - | 2 | 2 | 1 | Y |
5 | 21–22 Dec 2020 | 00:00–03:00 | 03:00 | - | - | - | 3 | Y |
6 | 22–23 Dec 2020 | 02:00–04:00 | 02:00 | - | - | - | 2 | Y |
7 | 23–24 Dec 2020 | 20:00–04:00 | 08:00 | - | 3 | 1 | 4 | Y |
8 | 24–25 Dec 2020 | 21:00–03:00 | 06:00 | - | - | - | 6 | Y |
9 | 29–30 Dec 2020 | 00:00–03:00 | 03:00 | - | 2 | - | 1 | Y |
10 | 30–31 Dec 2020 | 19:00–04:00 | 09:00 | - | 6 | - | 3 | Y |
11 | 03–04 Jan 2021 | 21:00–04:00 | 07:00 | - | 4 | 2 | 1 | Y |
12 | 05–06 Jan 2021 | 03:00–04:00 | 01:00 | - | - | - | 1 | Y |
13 | 06–07 Jan 2021 | 15:00–02:00 | 11:00 | - | - | - | 11 | Y |
14 | 07–08 Jan 2021 | 19:00–23:00 | 04:00 | 1 | 2 | - | 1 | Y |
15 | 10–11 Jan 2021 | 22:00–02:00 | 04:00 | 2 | 1 | 1 | - | N |
16 | 12–13 Jan 2021 | 18:00–04:00 | 10:00 | - | 5 | 1 | 4 | Y |
17 | 13–14 Jan 2021 | 22:00–05:00 | 07:00 | - | 2 | - | 5 | Y |
18 | 14–15 Jan 2021 | 22:00–04:00 | 06:00 | - | - | - | 6 | Y |
19 | 15–16 Jan 2021 | 17:00–06:00 | 13:00 | 9 | 3 | - | 1 | Y |
20 | 16–17 Jan 2021 | 19:00–03:00 | 08:00 | - | 4 | - | 4 | Y |
21 | 17–18 Jan 2021 | 02:00–03:00 | 01:00 | - | - | - | 1 | Y |
22 | 18–19 Jan 2021 | 21:00–06:00 | 09:00 | 1 | 4 | 2 | 2 | Y |
23 | 19–20 Jan 2021 | 20:00–00:00 | 04:00 | - | - | 1 | 3 | Y |
24 | 21–22 Jan 2021 | 03:00–05:00 | 02:00 | - | - | - | 2 | Y |
25 | 22–23 Jan 2021 | 18:00–02:00 | 08:00 | - | - | 2 | 6 | Y |
26 | 23–24 Jan 2021 | 00:00–04:00 | 04:00 | - | 1 | 2 | 1 | Y |
27 | 25–26 Jan 2021 | 22:00–02:00 | 04:00 | - | - | 2 | 2 | Y |
28 | 27–28 Jan 2021 | 22:00–02:00 | 04:00 | - | - | 4 | Y | |
29 | 28–29 Dec 2021 | 23:00–04:00 | 05:00 | - | 1 | 2 | 2 | Y |
30 | 01–02 Jan 2022 | 22:00–03:00 | 05:00 | - | - | - | 5 | Y |
31 | 05–06 Jan 2022 | 02:00–05:00 | 03:00 | - | - | - | 3 | Y |
32 | 06–07 Jan 2022 | 01:00–03:00 | 02:00 | - | - | - | 2 | Y |
33 | 10–11 Jan 2022 | 21:00–04:00 | 07:00 | - | 4 | 2 | 1 | Y |
34 | 11–12 Jan 2022 | 22:00–02:00 | 04:00 | - | - | - | 4 | Y |
35 | 12–13 Jan 2022 | 23:00–05:00 | 06:00 | - | 5 | - | 1 | Y |
36 | 13–14 Jan 2022 | 21:00–05:00 | 08:00 | - | 4 | 3 | 1 | Y |
37 | 14–15 Jan 2022 | 18:00–00:00 | 06:00 | - | 3 | - | 3 | Y |
38 | 19–20 Jan 2022 | 22:00–05:00 | 07:00 | - | 4 | 2 | 1 | Y |
39 | 20–21 Jan 2022 | 19:00–01:00 | 06:00 | - | - | 5 | 1 | Y |
40 | 24–25 Jan 2022 | 22:00–02:00 | 04:00 | - | 3 | - | 1 | Y |
41 | 26–27 Jan 2022 | 19:00–22:00 | 03:00 | - | 2 | - | 1 | Y |
Total Fog Hours | 226 | 17 | 67 | 31 | 111 |
WRF Model Setup | Details |
---|---|
Initial/boundary conditions | GEFS T1534; 1 control and 20 perturbed members |
Domain size and resolution | 440 × 200 grids; 4 km |
Vertical level | 60 (total 19 levels below 1 km) |
Radiation scheme | CAM (for both shortwave and longwave) |
Microphysics | WSM6 |
Land surface model | Pleim–Xiu |
PBL | MYNN 2.5 |
Initialization time | 0000 UTC |
Spin up time | 6 h |
Forecast leading time | 48 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parde, A.N.; Ghude, S.D.; Dhangar, N.G.; Lonkar, P.; Wagh, S.; Govardhan, G.; Biswas, M.; Jenamani, R.K. Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog. Atmosphere 2022, 13, 1608. https://doi.org/10.3390/atmos13101608
Parde AN, Ghude SD, Dhangar NG, Lonkar P, Wagh S, Govardhan G, Biswas M, Jenamani RK. Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog. Atmosphere. 2022; 13(10):1608. https://doi.org/10.3390/atmos13101608
Chicago/Turabian StyleParde, Avinash N., Sachin D. Ghude, Narendra Gokul Dhangar, Prasanna Lonkar, Sandeep Wagh, Gaurav Govardhan, Mrinal Biswas, and R. K. Jenamani. 2022. "Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog" Atmosphere 13, no. 10: 1608. https://doi.org/10.3390/atmos13101608
APA StyleParde, A. N., Ghude, S. D., Dhangar, N. G., Lonkar, P., Wagh, S., Govardhan, G., Biswas, M., & Jenamani, R. K. (2022). Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog. Atmosphere, 13(10), 1608. https://doi.org/10.3390/atmos13101608