Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Exploratory Data Analysis
2.3. Derived Variables
2.4. Prediction Model for the Binary Outcome Fog
2.5. Evaluation of Prediction Models
3. Results
3.1. Data Exploration
3.2. Prediction Model Performance
3.3. Consensus Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, D. The subsidence inversion and forecasting maximum temperature in the San Diego area. Bull. Am. Meteorol. Soc. 1948, 29, 288–293. [Google Scholar] [CrossRef]
- Leipper, D. Fog on the U.S. West coast: A review. Bull. Am. Meteorol. Soc. 1994, 75, 229–240. [Google Scholar] [CrossRef]
- Ward, R.D. Fog in the United States. Geogr. Rev. 1923, 12, 576–582. [Google Scholar] [CrossRef]
- Taylor, D.L. Monterey County Commute Traffic a Challenge to Cutting Greenhouse Gasses. 5 August 2021, Monterey Herald. Available online: https://www.montereyherald.com/2021/08/05/monterey-county-commute-traffic-a-challenge-to-cutting-greenhouse-gasses/ (accessed on 29 April 2020).
- Churm, S.R. Treacherous Surf, Thick Fog Blamed in Aanglers’ Deaths. 18 February 1985, Los Angeles Times. Available online: https://www.latimes.com/archives/la-xpm-1985-02-18-mn-3152-story.html (accessed on 29 April 2020).
- Klemm, O.; Schemenauer, R.S.; Lummerich, A.; Cereceda, P.; Marzol, V.; Corell, D.; Van Heerden, J.; Reinhard, D.; Gherezghiher, T.; Olivier, J. Fog as a fresh-water resource: Overview and perspectives. Ambio 2012, 41, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Marchesiello, P.; McWilliams, J.C.; Schcheptkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 2003, 33, 753–783. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Chien, S.H.; Jin, J.; Miller, N.L. Modeling air-land-sea interactions using the integrated regional model system in Monterey Bay, California. Mon. Weather. Rev. 2012, 140, 1285–1306. [Google Scholar] [CrossRef]
- Blake, D. Temperature inversions at San Diego, as deduced from aerographical observations by airplane. Mon. Weather. Rev. 1928, 56, 221–224. [Google Scholar] [CrossRef]
- Koziara, M.C.; Renard, R.J.; Thompson, W.J. Estimating marine fog probability using a model output statistics scheme. Mon. Weather. Rev. 1983, 111, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Vislocky, R.L.; Fritsch, J.M. An automated, observations-based system for short-term prediction of ceiling and visibility. Weather. Forecast. 1997, 12, 31–43. [Google Scholar] [CrossRef]
- Hilliker, J.L.; Fritsch, J.M. An observations-based statistical system for warm-season hourly probabilistic forecasts of low ceiling at the San Francisco International Airport. J. Appl. Meteorol. 1999, 38, 1692–1705. [Google Scholar] [CrossRef]
- Peak, J.E.; Tag, P.M. An expert system approach for prediction of maritime visibility obscuration. Mon. Weather. Rev. 1989, 117, 2641–2653. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Potts, R.; Huang, X.; Elliot, G.; Rivett, R. A Fuzzy Logic Fog Forecasting Model for Perth Airport. Pure Appl. Geophys. 2012, 169, 1107–1119. [Google Scholar] [CrossRef]
- Cornejo-Bueno, S.; Casillas-Pérez, D.; Cornejo-Bueno, K.; Chidean, M.I.; Caamaño, A.J.; Sanz-Justo, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Persistence analysis and prediction of low-visibility events at Valladolid Airport, Spain. Symmetry 2020, 12, 1045. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Muller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure App. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, K.J.; Joo, H.S.; Han, Y.H.; Kim, Y.T.; Kwon, S.J. Sea fog dissipation prediction in Incheon Port and Haeundae Beach using machine learning and deep learning. Sensors 2021, 21, 5232. [Google Scholar] [CrossRef]
- Cornejo-Bueno, S.; Casillas-Pérez, D.; Cornejo-Bueno, L.; Chidean, M.I.; Caamaño, A.J.; Cerro-Prada, E.; Casanova-Mateo, C.; Salcedo-Sanz, S. Statistical analysis and machine learning prediction of fog-caused low-visibility events at A-8 motor-road in Spain. Atmosphere 2021, 12, 679. [Google Scholar] [CrossRef]
- Castillo-Botón, C.; Casillas-Pérez, D.; Casanova-Mateo, C.; Ghimire, S.; Cerro-Prada, E.; Gutierrez, P.A.; Deo, R.C.; Salcedo-Sanz, S. Machine learning regression and classification methods for fog events prediction. Atmos. Res. 2022, 272, 106157. [Google Scholar] [CrossRef]
- Bari, D.; Ameksa, M.; Ouagabi, A. A comparison of datamining tools for geo-spatial estimation of visibility from AROME-Morocco model outputs in regression framework. In Proceedings of the 2020 IEEE International Conference of Moroccan Geomatics (Morgeo), Casablanca, Morocco, 11–13 May 2020; pp. 1–7. [Google Scholar]
- Bari, D.; Ouagabi, A. Machine-learning regression applied to diagnose horizontal visibility from mesoscale NWP model forecasts. Springer Nat. Appl. Sci. 2020, 2, 556. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J. The Collection of Fog Drip. Water Resour. Res. 1985, 21, 392–394. [Google Scholar] [CrossRef]
- Shi, W.; Anderson, M.J.; Tulkoff, J.B.; Kennedy, B.S.; Boreyko, J.B. Fog Harvesting with Harps. ACS Appl. Mater. Interfaces 2018, 10, 11979–11986. [Google Scholar] [CrossRef]
- Schemenauer, R.S.; Cereceda, P. A proposed standard fog collector for use in high-elevation regions. J. Appl. Meteorol. Climatol. 1994, 33, 1313–1322. [Google Scholar] [CrossRef]
- Fernandez, D.M.; Torregrosa, A.; Weiss-Penzias, P.S.; Zhang, B.J.; Sorensen, D.; Cohen, R.E.; McKinley, G.H.; Kleingartner, J.; Oliphant, A.; Bowman, M. Fog water collection effectiveness: Mesh intercomparisons. Aerosol Air Qual. Res. 2018, 18, 270–283. [Google Scholar] [CrossRef]
- Montecinos, S.; Carvajal, D.; Cereceda, P.; Concha, M. Collection efficiency of fog events. Atmos. Res. 2018, 209, 163–169. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef]
- Bergot, T.; Lestringant, R. On the Predictability of Radiation Fog Formation in a Mesoscale Model: A Case Study in Heterogeneous Terrain. Atmosphere 2019, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Yum, S.S.; Hong, J.; Song, J.I. Improvement of fog simulation by the nudging of meteorological tower data in the WRF and PAFOG coupled model. Atmosphere 2020, 11, 311. [Google Scholar] [CrossRef] [Green Version]
- Chmielecki, R.M.; Raftery, A.E. Probabilistic visibility forecasting using Bayesian model averaging. Mon. Weather. Rev. 2011, 139, 1626–1636. [Google Scholar] [CrossRef] [Green Version]
- Roquelaure, S.; Bergot, T. A local ensemble prediction system for fog and low clouds: Construction, Bayesian model averaging calibration, and validation. J. Appl. Meteorol. Climatol. 2008, 47, 3072–3088. Available online: http://www.jstor.org/stable/26172791 (accessed on 29 April 2020).
- Clemen, R.T. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583. [Google Scholar] [CrossRef]
0 am | 3 am | 6 am | 9 am | 12 pm | 3 pm | 6 pm | 9 pm | ||
---|---|---|---|---|---|---|---|---|---|
LWC (log base-10) | Mean | −2.98 | −2.89 | −2.91 | −3.86 | −4.37 | −4.29 | −3.82 | −3.46 |
Median | −3.67 | −3.52 | −3.50 | −3.98 | −4.37 | −4.33 | −4.16 | −3.97 | |
SD | 1.37 | 1.35 | 1.25 | 0.70 | 0.38 | 0.51 | 1.13 | 1.17 | |
Minimum | −4.67 | −5.32 | −4.47 | −5.01 | −5.24 | −5.30 | −6.09 | −5.04 | |
Maximum | −0.50 | −0.47 | −0.38 | −1.54 | −3.10 | −1.78 | −0.74 | −0.59 | |
T | Mean | 12.94 | 12.38 | 11.84 | 14.86 | 19.61 | 18.22 | 15.50 | 13.84 |
Median | 12.95 | 12.62 | 12.13 | 14.02 | 18.18 | 17.58 | 15.08 | 13.62 | |
SD | 1.89 | 2.09 | 2.47 | 3.52 | 4.33 | 3.14 | 2.82 | 1.97 | |
Minimum | 8.37 | 5.97 | 4.55 | 7.68 | 14.08 | 13.23 | 11.25 | 8.63 | |
Maximum | 16.87 | 17.52 | 18.60 | 25.68 | 31.83 | 28.98 | 24.22 | 20.25 | |
DPD | Mean | 1.46 | 1.38 | 1.41 | 3.26 | 7.36 | 6.06 | 3.54 | 2.04 |
Median | 0.71 | 0.25 | 0.09 | 1.92 | 5.97 | 5.60 | 2.93 | 1.28 | |
SD | 2.21 | 2.29 | 2.42 | 3.67 | 3.91 | 3.16 | 3.07 | 2.42 | |
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 1.18 | 0.72 | 0.00 | 0.00 | |
Maximum | 10.58 | 10.38 | 10.24 | 12.51 | 17.92 | 16.39 | 12.74 | 11.84 | |
WS | Mean | 2.66 | 2.31 | 2.14 | 2.47 | 5.06 | 7.22 | 4.88 | 3.22 |
Median | 2.08 | 2.02 | 2.10 | 2.20 | 5.13 | 7.28 | 4.82 | 2.63 | |
SD | 1.72 | 1.36 | 1.23 | 1.39 | 2.08 | 1.30 | 1.56 | 1.88 | |
Minimum | 0.17 | 0.42 | 0.15 | 0.48 | 0.92 | 2.90 | 1.72 | 0.42 | |
Maximum | 7.45 | 5.73 | 5.05 | 7.45 | 11.93 | 11.52 | 9.23 | 7.97 | |
WD | Mean | 208.03 | 176.99 | 160.83 | 158.19 | 236.36 | 265.05 | 258.20 | 239.32 |
Median | 240.20 | 178.68 | 127.40 | 112.33 | 264.12 | 263.72 | 256.75 | 249.52 | |
SD | 67.49 | 75.84 | 70.91 | 77.37 | 66.00 | 9.84 | 19.04 | 55.51 | |
Minimum | 56.85 | 47.70 | 18.77 | 51.10 | 35.32 | 238.67 | 227.08 | 46.92 | |
Maximum | 304.87 | 319.97 | 297.38 | 332.30 | 304.35 | 295.65 | 317.65 | 319.22 | |
SW | Mean | 0.00 | 0.00 | 0.84 | 211.95 | 571.27 | 442.13 | 59.76 | 0.00 |
Median | 0.00 | 0.00 | 0.00 | 225.47 | 596.88 | 441.30 | 43.77 | 0.00 | |
SD | 0.00 | 0.00 | 1.79 | 106.06 | 161.48 | 145.77 | 60.07 | 0.00 | |
Minimum | 0.00 | 0.00 | 0.00 | 17.20 | 110.67 | 60.70 | 1.50 | 0.00 | |
Maximum | 0.00 | 0.00 | 10.93 | 445.85 | 841.13 | 731.62 | 239.77 | 0.00 | |
LW | Mean | 348.59 | 347.66 | 346.44 | 350.20 | 357.50 | 353.28 | 349.10 | 347.71 |
Median | 358.37 | 359.28 | 357.23 | 358.78 | 355.02 | 351.15 | 352.47 | 355.35 | |
SD | 23.93 | 26.36 | 28.90 | 27.65 | 22.67 | 21.76 | 24.80 | 23.86 | |
Minimum | 275.72 | 266.23 | 245.38 | 264.83 | 313.80 | 298.33 | 293.48 | 280.82 | |
Maximum | 377.13 | 388.17 | 382.10 | 401.78 | 416.98 | 402.27 | 389.88 | 387.18 |
LWC(t = 17) | LWC(t = 18) | LWC(t = 19) | LWC(t = 20) | LWC(t = 21) | |
---|---|---|---|---|---|
LWC(t − 3) | 0.39 *** | 0.71 *** | 0.86 *** | 0.81 *** | 0.79 *** |
ΔLWC(t − 3) | 0.41 *** | 0.39 *** | 0.49 *** | 0.43 *** | 0.35 *** |
ΔLWC(t − 6, t − 3) | 0.21 * | 0.56 *** | 0.77 *** | 0.74 *** | 0.73 *** |
DPD(t − 3) | 0.14 | 0.33 *** | 0.47 *** | 0.52 *** | 0.52 *** |
ΔDPD(t − 3) | 0.29 ** | 0.26 * | 0.21 * | 0.05 | 0.25 * |
ΔDPD(t − 6, t − 3) | 0.22 * | 0.37 *** | 0.43 *** | 0.39 *** | 0.13 |
T(t − 3) | 0.20 * | 0.38 *** | 0.49 *** | 0.52 *** | 0.49 *** |
WS(t − 3) | 0.05 | 0.04 | 0.09 | 0.09 | 0.08 |
WD(t − 3) | 0.19 | 0.05 | 0.19 | 0.21 * | 0.22 * |
SW(t − 3) | 0.28 ** | 0.37 *** | 0.51 *** | 0.45 *** | 0.32 ** |
LW(t − 3) | 0.23 * | 0.18 | 0.01 | 0.06 | 0.15 |
All (Adjusted R-Squared) | 0.41 | 0.66 | 0.79 | 0.72 | 0.67 |
1 h Forecast | 2 h Forecast | 3 h Forecast | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Criterion | LR0 | LR1 | LR2 | LR3 | RF | LR0 | LR1 | LR2 | LR3 | RF | LR0 | LR1 | LR2 | LR3 | RF |
5 pm | HR | 0.75 | 0.77 | 0.88 | 1.00 | 0.88 | 0.38 | 0.50 | 0.38 | 0.50 | 0.50 | 0.16 | 0.32 | 0.65 | 0.81 | 0.33 |
FAR | 0.33 | 0.14 | 0.22 | 0.20 | 0.00 | 0.40 | 0.00 | 0.24 | 0.33 | 0.00 | 0.50 | 0.33 | 0.20 | 0.29 | 0.00 | |
CSI | 0.55 | 0.68 | 0.70 | 0.80 | 0.88 | 0.30 | 0.50 | 0.34 | 0.40 | 0.50 | 0.14 | 0.28 | 0.55 | 0.61 | 0.33 | |
6 pm | HR | 0.75 | 0.88 | 0.75 | 0.88 | 0.88 | 0.75 | 0.88 | 0.88 | 0.88 | 0.88 | 0.25 | 0.50 | 0.63 | 0.63 | 0.50 |
FAR | 0.40 | 0.22 | 0.00 | 0.00 | 0.13 | 0.33 | 0.13 | 0.22 | 0.22 | 0.13 | 0.50 | 0.00 | 0.17 | 0.50 | 0.00 | |
CSI | 0.50 | 0.70 | 0.75 | 0.88 | 0.78 | 0.55 | 0.78 | 0.70 | 0.70 | 0.78 | 0.20 | 0.50 | 0.56 | 0.38 | 0.50 | |
7 pm | HR | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 0.67 | 0.89 | 0.67 | 0.78 | 0.89 | 0.67 | 0.89 | 0.89 | 0.89 | 0.89 |
FAR | 0.18 | 0.00 | 0.10 | 0.10 | 0.00 | 0.40 | 0.20 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.11 | 0.27 | 0.00 | |
CSI | 0.82 | 0.89 | 0.90 | 0.90 | 1.00 | 0.46 | 0.73 | 0.67 | 0.78 | 0.89 | 0.50 | 0.89 | 0.80 | 0.67 | 0.89 | |
8 pm | HR | 1.00 | 0.90 | 0.90 | 0.90 | 0.90 | 0.80 | 0.80 | 0.80 | 0.70 | 0.80 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
FAR | 0.33 | 0.18 | 0.18 | 0.25 | 0.18 | 0.38 | 0.00 | 0.11 | 0.13 | 0.20 | 0.30 | 0.13 | 0.36 | 0.22 | 0.13 | |
CSI | 0.67 | 0.75 | 0.75 | 0.69 | 0.75 | 0.53 | 0.80 | 0.73 | 0.64 | 0.67 | 0.54 | 0.64 | 0.50 | 0.58 | 0.64 | |
9 pm | HR | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.80 | 0.80 | 0.80 | 0.70 | 0.80 |
FAR | 0.53 | 0.18 | 0.18 | 0.31 | 0.10 | 0.40 | 0.18 | 0.25 | 0.31 | 0.25 | 0.38 | 0.00 | 0.11 | 0.22 | 0.20 | |
CSI | 0.45 | 0.75 | 0.75 | 0.64 | 0.82 | 0.56 | 0.75 | 0.69 | 0.64 | 0.69 | 0.53 | 0.80 | 0.73 | 0.58 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Rickard, C.; Hernandez-Vazquez, J.; Fernandez, D. Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area. Atmosphere 2022, 13, 1332. https://doi.org/10.3390/atmos13081332
Kim S, Rickard C, Hernandez-Vazquez J, Fernandez D. Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area. Atmosphere. 2022; 13(8):1332. https://doi.org/10.3390/atmos13081332
Chicago/Turabian StyleKim, Steven, Conor Rickard, Julio Hernandez-Vazquez, and Daniel Fernandez. 2022. "Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area" Atmosphere 13, no. 8: 1332. https://doi.org/10.3390/atmos13081332
APA StyleKim, S., Rickard, C., Hernandez-Vazquez, J., & Fernandez, D. (2022). Early Night Fog Prediction Using Liquid Water Content Measurement in the Monterey Bay Area. Atmosphere, 13(8), 1332. https://doi.org/10.3390/atmos13081332