PM2.5 Source Apportionment and Implications for Particle Hygroscopicity at an Urban Background Site in Athens, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Sampling and Analysis
2.2. Source Apportionment by Positive Matrix Factorization
3. Results
3.1. PM2.5 Chemical Composition and Hygroscopicity
3.2. PM2.5 and Hygroscopicity Source Apportionment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Breon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.S.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Beelen, R.; Hoek, G.; Raaschou-Nielsen, O.; Stafoggia, M.; Jovanovic Andersen, J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.H.; et al. Natural-cause mortality and long-term exposure to particle components: An analysis of 19 European cohorts within the multi-center ESCAPE project. Environ. Health Perspect. 2015, 123, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, R.; Li, R.; Collins, D.R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol. Atmos. Environ. 2004, 38, 3285–3303. [Google Scholar] [CrossRef]
- Kerminen, V.-M. The effects of particle chemical character and atmospheric processes on particle hygroscopic properties. J. Aerosol Sci. 1997, 28, 121–132. [Google Scholar] [CrossRef]
- Lai, L.W. Poor Visibility in Winter Due to Synergistic Effect Related to Fine Particulate Matter and Relative Humidity in the Taipei Metropolis, Taiwan. Atmosphere 2022, 13, 270. [Google Scholar] [CrossRef]
- Massoli, P.; Bates, T.S.; Quinn, P.K.; Lack, D.A.; Baynard, T.; Lerner, B.M.; Tucker, S.C.; Brioude, J.; Stohl, A.; Williams, E.J. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing. J. Geophys. Res. Atmos. 2009, 114, D00F07. [Google Scholar] [CrossRef] [Green Version]
- Malm, W.C.; Day, D.E. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 2001, 35, 2845–2860. [Google Scholar] [CrossRef]
- Väisänen, O.; Ruuskanen, A.; Ylisirniö, A.; Miettinen, P.; Portin, H.; Hao, L.; Leskinen, A.; Komppula, M.; Romakkaniemi, S.; Lehtinen, K.E.J.; et al. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation. Atmos. Chem. Phys. 2016, 16, 10385–10398. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.V.; Delgado-Saborit, J.M.; Harrison, R.M. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual. Atmos. Health 2015, 8, 429–440. [Google Scholar] [CrossRef]
- Broday, D.M.; Georgopoulos, P.G. Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 2001, 34, 144–159. [Google Scholar] [CrossRef]
- Krieger, U.K.; Marcolli, C.; Reid, J.P. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 2012, 41, 6631–6662. [Google Scholar]
- Choi, M.Y.; Chan, C.K. The effects of organic species on the hygroscopic behaviors of inorganic aerosols. Environ. Sci. Technol. 2002, 36, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, B.R.T.; Rogge, W.F.; Mazurek, M.A.; Standley, L.J.; Cass, G.R. Lignan pyrolysis products, lignans, and renin acids as specified tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol. 1993, 27, 2533–2541. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Huang, S.; Xue, B.; Luo, B.; Song, Q.; Chen, W.; Hu, W.; Li, W.; Zhao, P.; Cai, M.; et al. Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity. Atmos. Chem. Phys. 2021, 21, 10375–10391. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Hu, M.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Zhang, Y.; Liu, X.; Cheng, N. Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China. J. Environ. Sci. 2020, 87, 49–59. [Google Scholar] [CrossRef]
- Mandariya, A.K.; Tripathi, S.N.; Gupta, T.; Mishra, G. Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: Impact of ambient relative humidity. Sci. Total Environ. 2020, 704, 135363. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.; Chen, H.; Chen, J.; Yang, X.; Gross, D.S. Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China. Atmos. Environ. 2014, 95, 318–326. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Jung, J.; Gu, J.; Li, Y.; Guo, S.; Chang, S.-Y.; Yue, D.; Lin, P.; Kim, Y.J.; et al. Research on the hygroscopic properties of aerosols by measurement and modeling during CAREBeijing-2006. J. Geophys. Res. 2009, 114, D00G16. [Google Scholar] [CrossRef]
- Carrico, C.M.; Kreidenweis, S.M.; Malm, W.C.; Day, D.E.; Lee, T.; Carrillo, J.; McMeeking, G.R.; Collett, J.L., Jr. Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmos. Environ. 2005, 39, 1393–1404. [Google Scholar] [CrossRef]
- Stock, M.; Cheng, Y.F.; Birmili, W.; Massling, A.; Wehner, B.; Muller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions. Atmos. Chem. Phys. 2011, 11, 4251–4271. [Google Scholar] [CrossRef]
- Gysel, M.; Crosier, J.; Topping, D.O.; Whitehead, J.D.; Bower, K.N.; Cubison, M.J.; Williams, P.I.; Flynn, M.J.; McFiggans, G.B.; Coe, H. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos. Chem. Phys. 2007, 7, 6131–6144. [Google Scholar] [CrossRef] [Green Version]
- Kreidenweis, S.M.; Remer, L.A.; Bruintjes, R.; Dubovik, O. Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. J. Geophys. Res. 2001, 106, 4831–4844. [Google Scholar]
- Grose, M.; Sakurai, H.; Savstrom, J.; Stolzenburg, M.R.; Watts, W.F.; Morgan, C.G.; Murray, I.P.; Twigg, M.V.; Kittelson, D.B.; McMurry, P.H. Chemical and physical properties of ultrafine diesel exhaust particles sampled downstream of a catalytic trap. Environ. Sci. Technol. 2006, 40, 5502–5507. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, E.; Burtscher, H.; Baltensperger, U. Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 1997, 31, 2311–2327. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Chen, J.; Ma, Z.; Ye, X.; Yang, X.; Wang, L.; Wang, X.; Mellouki, A. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmos. Environ. 2016, 140, 94–105. [Google Scholar] [CrossRef]
- Carrico, C.M.; Petters, M.D.; Kreidenweis, S.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.J.T.; Engling, G.; Malm, W.C.; Collett, J.L., Jr. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos. Chem. Phys. 2010, 10, 5165–5178. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.A.; Arnott, W.P.; Moosmuller, H.; Chakrabarty, R.K.; Carrico, C.M.; Kreidenweis, S.M.; Day, D.E.; Malm, W.C.; Laskin, A.; Jimenez, J.L.; et al. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmos. Chem. Phys. 2009, 9, 8949–8966. [Google Scholar] [CrossRef] [Green Version]
- Rissler, J.; Pagels, J.; Swietlicki, E.; Wierzbicka, A.; Strand, M.; Lillieblad, L.; Sanati, M.; Bohgard, M. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers. Aerosol. Sci. Technol. 2005, 39, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Z.; Wu, Y.; Tao, J.; Xia, Y.; Wang, C.; Zhang, R. Effects of chemical compositions in fine particles and their identified sources on hygroscopic growth factor during dry season in urban Guangzhou of South China. Sci. Total Environ. 2021, 801, 149749. [Google Scholar] [CrossRef]
- Vu, T.V.; Shi, Z.; Harrison, R.M. Estimation of hygroscopic growth properties of source-related sub-micrometre particle types in a mixed urban aerosol. NPJ Clim. Atmos. Sci. 2021, 4, 21. [Google Scholar] [CrossRef]
- Bezantakos, S.; Barmpounis, K.; Giamarelou, M.; Bossioli, E.; Tombrou, M.; Mihalopoulos, N.; Eleftheriadis, K.; Kalogiros, J.; Allan, J.D.; Bacak, A.; et al. Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea. Atmos. Chem. Phys. 2013, 13, 11595–11608. [Google Scholar] [CrossRef]
- Petaja, T.; Kerminen, V.-M.; Dal Maso, M.; Junninen, H.; Koponen, I.K.; Hussein, T.; Aalto, P.P.; Andronopoulos, S.; Robin, D.; Hameri, K.; et al. Sub-micron atmospheric aerosols in the surroundins of Marseille and Athens: Physical characterization and new particle formation. Atmos. Chem. Phys. 2007, 7, 2705–2720. [Google Scholar] [CrossRef] [Green Version]
- Spitieri, C.; Gini, M.; Gysel-Beer, M.; Eleftheriadis, K. Annual cycle of hygroscopic properties and mixing state of the suburban aerosol in Athens, Greece. Atmos. Chem. Phys. Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Eleftheriadis, K.; Gini, M.I.; Diapouli, E.; Vratolis, S.; Vasilatou, V.; Fetfatzis, P.; Manousakas, M.I. Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality. Sci. Rep. 2021, 11, 14477. [Google Scholar] [CrossRef] [PubMed]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Kantarelou, V.; Zarkadas, C.; Kalogridis, A.-C.; Karydas, A.-G.; Eleftheriadis, K. XRF characterization and source apportionment of PM10 samples collected in a coastal city. X Ray Spectrom. 2018, 47, 190–200. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Gu, P.; Dallmann, T.R.; Presto, A.A.; Donahue, N.M. Estimating ambient particulate organic carbon concentrations and partitioning using thermal optical measurements and the volatility basis set. Aerosol Sci. Technol. 2016, 50, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Panteliadis, P.; Hafkenscheid, T.; Cary, B.; Diapouli, E.; Fischer, A.; Favez, O.; Quincey, P.; Viana, M.; Hitzenberger, R.; Vecchi, R.; et al. ECOC comparison exercise with identical thermal protocols after temperature offset correction-Instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Tech. 2015, 8, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Belis, C.A.; Pernigotti, D.; Pirovano, G.; Favez, O.; Jaffrezo, J.L.; Kuenen, J.; van Der Gon, H.D.; Reizer, M.; Riffault, V.; Alleman, L.Y.; et al. Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmos. Environ. X 2020, 5, 100053. [Google Scholar] [CrossRef]
- Manousakas, M.; Papaefthymiou, H.; Diapouli, E.; Migliori, A.; Karydas, A.G.; Bogdanovic-Radovic, I.; Eleftheriadis, K. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci. Total Environ. 2017, 574, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef]
- Li, H.Z.; Dallmann, T.R.; Li, X.; Gu, P.; Presto, A.A. Urban Organic Aerosol Exposure: Spatial Variations in Composition and Source Impacts. Environ. Sci. Technol. 2018, 52, 415–426. [Google Scholar] [CrossRef]
- Kim, E.; Hopke, P.K. Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. J. Air Waste Manag. Assoc. 2004, 54, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Hopke, P.K.; Edgerton, E.S. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos. Environ. 2004, 38, 3349–3362. [Google Scholar] [CrossRef]
- Jeong, H.; Ryu, J.-S.; Ra, K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. Environ. Pollut. 2022, 292, 118339. [Google Scholar] [CrossRef]
- Bove, M.C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P. An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx. Atmos. Environ. 2014, 94, 274–286. [Google Scholar] [CrossRef]
- Pey, J.; Pérez, N.; Cortés, J.; Alastuey, A.; Querol, X. Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: Primary and aged contributions. Sci. Total Environ. 2013, 463–464, 497–507. [Google Scholar] [CrossRef]
- Kim, E.; Hopke, P.K. Improving Source Apportionment of Fine Particles in the Eastern United States Utilizing Temperature-Resolved Carbon Fractions. J. Air Waste Manag. Assoc. 2005, 55, 1456–1463. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, Y.; Russell, A.; Edgerton, E.S. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos. Environ. 2006, 40, S445–S466. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Almeida, S.M.; Manousakas, M.; Diapouli, E.; Kertesz, Z.; Samek, L.; Hristova, E.; Sega, K.; Padilla Alvarez, R.; Belis, C.A.; The IAEA European Region Study GROUP. Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115199. [Google Scholar] [CrossRef] [PubMed]
- Karanasiou, A.A.; Siskos, P.A.; Eleftheriadis, K. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions. Atmos. Environ. 2009, 43, 3385–3395. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Belis, C.; Vasilatou, V.; Gini, M.; Lucarelli, F.; Querol, X.; Eleftheriadis, K. Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area. Environ. Res. 2021, 192, 110257. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Poulain, L.; Müller, T.; Birmili, W.; Spindler, G.; Wiedensohler, A.; Baltensperger, U.; Weingartner, E. Influence of water uptake on the aerosol particle light scattering coefficients of the central european aerosol. Tellus Ser. B Chem. Phys. Meteorol. 2014, 66, 22716. [Google Scholar] [CrossRef] [Green Version]
- Duplissy, J.; DeCarlo, P.F.; Dommen, J.; Alfarra, M.R.; Metzger, A.; Barmpadimos, I.; Prevot, A.S.H.; Weingartner, E.; Tritscher, T.; Gysel, M.; et al. Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos. Chem. Phys. 2011, 11, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Mochida, M.; Kawamura, K. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. J. Geophys. Res. 2004, 109, D21202. [Google Scholar] [CrossRef] [Green Version]
- Swietlicki, E.; Hansson, H.-C.; Hämeri, K.; Svenningsson, B.; Massling, A.; Mcfiggans, G.; Mcmurry, P.H.; Petäjä, T.; Tunved, P.; Gysel, M.; et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with HTDMA instruments in various environments—A review. Tellus B 2008, 60, 432–469. [Google Scholar] [CrossRef] [Green Version]
- Tritscher, T.; Jurányi, Z.; Martin, M.; Chirico, R.; Gysel, M.; Heringa, M.F.; DeCarlo, P.F.; Sierau, B.; Prévôt, A.S.H.; Weingartner, E.; et al. Changes of hygroscopicity and morphology during ageing of diesel soot. Environ. Res. Lett. 2011, 6, 034026. [Google Scholar] [CrossRef]
- Zieger, P.; Vaisanen, O.; Corbin, J.C.; Partridge, D.G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U.K.; Leck, C.; et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 2017, 8, 15883. [Google Scholar] [CrossRef] [Green Version]
- Arub, Z.; Singh, G.; Habib, G.; Raman, R.S. Highly significant impact of mineral dust on aerosol hygroscopicity at New Delhi. Atmos. Environ. 2021, 254, 118375. [Google Scholar] [CrossRef]
- Kelly, J.T.; Chuang, C.C.; Wexler, A.S. Influence of dust composition on cloud droplet formation. Atmos. Environ. 2007, 41, 2904–2916. [Google Scholar] [CrossRef]
Cold Period | Warm Period | |||||
---|---|---|---|---|---|---|
Median | Range | Median | Range | |||
PM2.5 | 9.4 | 2.9 | 18.8 | 10.5 | 4.8 | 24.7 |
OC | 2280 | 436 | 6582 | 1762 | 737 | 4067 |
EC | 469 | 99 | 1725 | 327 | BDL 1 | 1096 |
OC/EC | 4.5 | 2.0 | 12.5 | 4.6 | 1.9 | 17.0 |
Na | 36.4 | BDL | 594 | 31.1 | BDL | 369 |
Mg | 3.6 | BDL | 319 | 2.2 | BDL | 252 |
Al | 4.8 | BDL | 517 | 34.7 | BDL | 567 |
Si | 5.4 | BDL | 1295 | 76.1 | BDL | 1238 |
S | 109 | 12.7 | 1595 | 526 | 23.2 | 1812 |
Cl | 1.2 | BDL | 638 | 0.8 | BDL | 53.5 |
K | 16.4 | 3.3 | 342 | 78.5 | 1.6 | 345 |
Ca | 11.8 | 0.7 | 431 | 82.5 | 2.6 | 437 |
Ti | 0.8 | BDL | 40.5 | 3.3 | BDL | 39.2 |
V | 0.5 | BDL | 6.9 | 0.6 | BDL | 7.2 |
Cr | 0.4 | BDL | 4.1 | 0.3 | BDL | 3.5 |
Mn | 1.0 | BDL | 5.4 | 1.0 | BDL | 7.2 |
Fe | 10.5 | 1.0 | 369 | 63.3 | 3.0 | 361 |
Ni | 0.8 | BDL | 12.4 | 0.6 | BDL | 11.2 |
Cu | 0.6 | BDL | 15.8 | 0.6 | BDL | 13.4 |
Zn | 2.8 | BDL | 36.0 | 3.5 | BDL | 49.5 |
Br | 1.1 | BDL | 7.6 | 1.1 | BDL | 6.3 |
Ba | 13.5 | BDL | 13.5 | 8.1 | BDL | 18.4 |
Pb | 1.9 | BDL | 17.6 | 1.4 | BDL | 18.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diapouli, E.; Fetfatzis, P.; Panteliadis, P.; Spitieri, C.; Gini, M.I.; Papagiannis, S.; Vasilatou, V.; Eleftheriadis, K. PM2.5 Source Apportionment and Implications for Particle Hygroscopicity at an Urban Background Site in Athens, Greece. Atmosphere 2022, 13, 1685. https://doi.org/10.3390/atmos13101685
Diapouli E, Fetfatzis P, Panteliadis P, Spitieri C, Gini MI, Papagiannis S, Vasilatou V, Eleftheriadis K. PM2.5 Source Apportionment and Implications for Particle Hygroscopicity at an Urban Background Site in Athens, Greece. Atmosphere. 2022; 13(10):1685. https://doi.org/10.3390/atmos13101685
Chicago/Turabian StyleDiapouli, Evangelia, Prodromos Fetfatzis, Pavlos Panteliadis, Christina Spitieri, Maria I. Gini, Stefanos Papagiannis, Vasiliki Vasilatou, and Konstantinos Eleftheriadis. 2022. "PM2.5 Source Apportionment and Implications for Particle Hygroscopicity at an Urban Background Site in Athens, Greece" Atmosphere 13, no. 10: 1685. https://doi.org/10.3390/atmos13101685
APA StyleDiapouli, E., Fetfatzis, P., Panteliadis, P., Spitieri, C., Gini, M. I., Papagiannis, S., Vasilatou, V., & Eleftheriadis, K. (2022). PM2.5 Source Apportionment and Implications for Particle Hygroscopicity at an Urban Background Site in Athens, Greece. Atmosphere, 13(10), 1685. https://doi.org/10.3390/atmos13101685